What’s a hash function?

It should be computationally implausible to work backwards from the output hash to the input.

Note – many thanks to a couple of colleagues who provided excellent suggestions for improvements to this text, which has been updated to reflect them.

Sometimes I like to write articles about basics in security, and this is one of those times. I’m currently a little over a third of the way through writing a book on trust in computing and the the cloud, and ended up creating a section about cryptographic hashes. I thought that it might be a useful (fairly non-technical) article for readers of this blog, so I’ve edited it a little bit and present it here for your delectation, dears readers.

There is a tool in the security practitioner’s repertoire that it is helpful for everyone to understand: cryptographic hash functions. A cryptographic hash function, such as SHA-256 or MD5 (now superseded for cryptographic uses as it’s considered “broken”) takes as input a set of binary data (typically as bytes) and gives as output which is hopefully unique for each set of possible inputs. The length of the output – “the hash” – for any particularly hash function is typically the same for any pattern of inputs (for SHA-256, it is 32 bytes, or 256 bits – the clue’s in the name). It should be computationally implausible (cryptographers hate the word “impossible”) to work backwards from the output hash to the input: this is why they are sometimes referred to as “one-way hash functions”. The phrase “hopefully unique” when describing the output is extremely important: if two inputs are discovered that yield the same output, the hash is said to have “collisions”. The reason that MD5 has become deprecated is that it is now trivially possible to find collisions with commercially-available hardware and software systems. Another important property is that even a tiny change in the message (e.g. changing a single bit) should generate a large change to the output (the “avalanche effect”).

What are hash functions used for, and why is the property of being lacking in collisions so important? The simplest answer to the first question is that hash functions are typically used to ensure that when someone hands you a piece of binary data (and all data in the world of computing can be described in binary format, whether it is text, an executable, a video, an image or complete database of data), it is what you expect. Comparing binary data directly is slow and arduous computationally, but hash functions are designed to be very quick. Given two files of several Megabytes or Gigabytes of data, you can produce hashes of them ahead of time, and defer the comparisons to when you need them[1].

Indeed, given the fact that it is easy to produce hashes of data, there is often no need to have both sets of data. Let us say that you want to run a file, but before you do, you want to check that it really is the file you think you have, and that no malicious actor has tampered with it. You can hash that file very quickly and easily, and as long as you have a copy of what the hash should look like, then you can be fairly certain that you have the file you wanted. This is where the “lack of collisions” (or at least “difficulty in computing collisions”) property of hash functions is important. If the malicious actor can craft a replacement file which shares the same hash as the real file, then the process is essentially useless.

In fact, there are more technical names for the various properties, and what I’ve described above mashes three of the important ones together. More accurately, they are:

  1. pre-image resistance – this says that if you have a hash, it should be difficult to find the message from which it was created, even if you know the hash function used;
  2. second pre-image resistance – this says that if you have a message, it should be difficult to find another message which, when hashed, generates the same hash;
  3. collision resistance – this says that it should be difficult to find any two messages which generate the same hash.

Collision resistance and second pre-image resistance sound like the same property, at first glances, but are subtly (but importantly) different. Pre-image resistance says that if you already have a message, finding another with a matching hash, whereas collision resistance should make it hard for you to find any two messages which will generate the same hash, and is a much harder property to fulfil in a hash function.

Let us go back to our scenario of a malicious actor trying to exchange a file (with a hash which we can check) with another one. Now, to use cryptographic hashes “in the wild” – out there in the real world beyond the perfectly secure, bug-free implementations populated by unicorns and overflowing with fat-free doughnuts – there are some important and difficult provisos that need to be met. More paranoid readers may already have spotted some of them, in particular:

  1. you need to have assurances that the copy of the hash you have has also not been subject to tampering;
  2. you need to have assurances that the entity performing the hash performs and reports it correctly;
  3. you need to have assurances that the entity comparing the two hashes reports the result of that comparison correctly.

Ensuring that you can meet such assurances it not necessarily an easy task, and is one of the reasons that Trusted Platform Modules (TPMs) are part of many computing systems: they act as a hardware root of trust with capabilities to provide such assurances. TPMs are a useful an important tool for real-world systems, and I plan to write an article on them (similar to What’s an HSM?) in the future.


1 – It’s also generally easier to sign hashes of data, rather than large sets of data themselves – this happens to be important as one of the most common uses of hashes is for cryptographic (“digital”) signatures.

Should I back up to iCloud?

Don’t walk into this with your eyes closed.

This is a fairly easy one to answer. If the response to either of these questions is “yes”, then you probably shouldn’t.

1. Do you have any sensitive data that you would be embarrassed to be seen by any agent of the US Government?
2. Are you a non-US citizen?

This may seem somewhat inflammatory, so let’s look into what’s going on here.

It was widely reported last week that Apple has decided not to implement end-to-end encryption for back-ups from devices to Apple’s iCloud.  Apparently, the decision was made after Apple came under pressure from the FBI, who are concerned that their ability to access data from suspects will be reduced.  This article is not intended to make any judgments about either Apple or any law enforcement agencies, but I had a request from a friend (you know who you are!) for my thoughts on this.

The main problem is that Apple (I understand – I’m not an Apple device user) do a great job of integrating all the services that they offer, and making them easy to use across all of your Apple products.  iCloud is one of these services, and it’s very easy to use.  Apple users have got used to simplicity of use, and are likely to use this service by default.  I understand this, but there’s a classic three-way tug of war for pretty much all applications or services, and it goes like this: you get to choose two out of the following three properties of a system, application or service, but only two of them.

  1. security
  2. ease of use
  3. cost

Apple make things easy to use, and quite often pretty secure, and you pay for this, but the specific cost (in inconvenience, legal fees, political pressure, etc.) of making iCloud more secure seems to have outweighed the security in this situation, and led them to decide not to enable end-to-end encryption.

So, it won’t be as secure as you might like.  Do you care?  Well, if you have anything you’d be embarrassed for US government agents to know about – and beyond embarrassed, if you have anything which isn’t necessary entirely, shall we say, legal – then you should know that it’s not going to be difficult for US government agents such as the FBI to access it.  This is all very well, but there’s a catch for those who aren’t in such a position.

The catch is that the protections offered to protect the privacy of individuals, though fairly robust within the US, are aimed almost exclusively at US citizens.  I am in no sense a lawyer, but as a non-US citizen, I would have zero confidence that it would be particularly difficult for any US government agent to access any information that I had stored on any iCloud account that I held.  Think about that for a moment.  The US has different standards to some other countries around, for instance, drug use, alcohol use, sexual practices and a variety of other issues.  Even if those things are legal in your country, who’s to say that they might be used now or in the future to decide whether you should be granted a visa to the US, or even allowed entry at all.  There’s already talk of immigration officials checking your social media for questionable material – extending this to unencrypted data held in the US is far from out of the question.

So this is another of those issues where you need to make a considered decision.  But you do need to make a decision: don’t walk into this with your eyes closed, because once Apple has the data, there’s realistically no taking it back from the US government.

 

 

 

コンフィデンシャルコンピューティング ー新しいHTTPSとは?

デフォルトで付いてくるセキュリティなんてありません。

この記事は
https://aliceevebob.com/2019/12/03/confidential-computing-the-new-https/ を翻訳したものです。
ここ数年、「http://…&#8221」のようなウェブサイトはなくなってきました。これはやっと業界がウェブサイトにセキュリティが「ある」ことに気付いたからです。と同時にサーバーとクライアントどちらともHTTPS通信の設定をすることが容易になったからです。

同じような動きがクラウド、エッジ、IoT、ブロックチェーン、AI/MLなどのコンピューティングにも現れることでしょう。

ストレージ内に保存するデータやネットワークで転送されるデータはは暗号化すべきである、とは認識されていました。けれどプロセスしている間使用されているデータを暗号化するのは難しく、高価でした。

Trusted Execution Environment (TEE)などのハードウェアを使って、使用中のデータやアルゴリズムを保護します。コンフィデンシャルコンピューティングは、ホストシステムや攻撃されやすい環境のデータを保護するのです。

TEE とEnarx Project(Nathaniel McCallumと共同創立しているプロジェクトです、参考: Enarx for everyone (a quest) and Enarx goes multi-platform )に付いては何度かブログに投稿しています。
EnarxはTEEを使っていて、Enarkでプラットフォームや使用言語に依存せず、機密性が必要なアプリケーションやマイクロサービスなどのコンポーネントを安全に信頼できないホストにデプロイすることができます。

Enarxはもちろん完全にオープンソースで(Apache2.0のライセンス使用)です。
ワークロードを信頼できないホストで稼働させるのはコンフィデンシャルコンピューティングが保証するところです。これからは下記のような場合の機密性があるデータにコンフィデンシャルコンピューティングが普通に使われるようになるでしょう。:

ストレージ:ストレージインフラを完全に信用できないので、保存したデータは暗号化したい
ネットワーク:ネットワークインフラを完全に信用できないので、転送中のデータを暗号化したい
コンピューティング:コンピューティングインフラを信用できないので、使用中のデータを暗号化したい

信頼信用に関してはもっと言いたいことはあるのですが「完全に」という言葉が大切です。(これは推敲の最中に書き足しました。)
パケットを送ったりやブロックを保存したりするかどうか、上記のどのケースでもCPUやファームウェアなど、インフラをある程度信頼しなくてはいけません。というのも、それらを信頼できなければコンピューティングなんてできません。
(準同型暗号という技術があり提供されつつありますが、まだ限定的で技術も未完成です)

CPU周りで見つかる脆弱性があると、CPUを完全に信頼するかどうか、また乗っているホストの物理攻撃に完全に安全がどうか、というのは何度も出てくる疑問です。
どちらの疑問にも、「いいえ」と答えられますね。しかし拡張性とデプロイの費用の問題から現状ではベストな技術でしょう。

二番目の疑問については、誰も(もしくは他の技術)完全に安全だと偽装できないということです。私たちがすべきなのはthreat model を考慮し、この場合ではTEEが特定の要件に対して十分なセキュリティを提供できるかどうか決定する、ということです。

一つ目の疑問に関してはEnarxの当てはまるモデルは、特定のCPUセットを信頼するかどうかデプロイメントの際に全て決め打ちする、ということでしょう。
例えばQというベンダのR世代のチップに脆弱性が見つかったとしましょう。「ワークロードをQから出ているR世代のCPUにはデプロイさせず、Q社のSタイプ、Tタイプ、Uタイプのチップと、P社、M社、N社のCPUにはデプロイOKとする」と宣言できれば簡単ですね。

コンフィデンシャルコンピューティングが注目されていますが、そこに適応させるには3つの変化のステージがあると考えています。

1 ハードウェアの稼働性:
TEEがサポートされているハードウェアが手に入るようになったのはここ半年から一年の間です。IntelのSGXやAMDのSEVなど市場で鍵となる製品が出てきだことからもわかります。
これからもTEEが使えるハードウェアの製品が出てくると予想されます。

2 業界の受け入れ状態:
アプリケーションのデプロイメントとしてクラウドが急激に受け入れられているのに合わせて法規制や整備は扱うデータを保護するよう、組織や団体に対して要求を増やしてきています。
組織や団体は、信頼性のないホストでの機密性の高いアプリケーション(もしくは機密データを扱うアプリ)の稼働方法にざわざわしてきています。正確には、彼らが完全に信用できないホスト上で、のアプリに関してですね。

これは別に驚くことではないのです。もしマーケットが投資に値するものではなければ、チップベンダーはこの技術に投資しないでしょう。
Linux FoundationのConfidential Computing Consortium (CCC)の体制は、どれくらい業界がコンフィデンシャルコンピューティングの共通使用モデルを見つけようとしているか、オープンソースプロジェクトにこのような技術採用を勧めているか、の別のよい例ですね。

その一つがRed Hatが始めたEnarxはCCCのプロジェクトです。

3 オープンソース:
ブロックチェーンのように、コンフィデンシャルコンピューティングはオープンソースを使うことがとても簡単な技術の一つです。

機密性の高いアプリケーションを動かす場合、動いているもの自体を信用しなくてはいけません。CPUやファームウェアのようなものではなく、TEEの中でワークロードの実際の実行を手伝うフレームワークのことです。

良い言い回しがあります。
「私はホストマシーンとソフトウェアスタックが信用できないからTEEを使うんだ」

しかしTEEのソフトウェア環境に可視性がなければ、ただソフトウェアを別の不可視性の高い環境に移しただけです。
TEEのオープンソースによって、あなたやコミュニティ5トはプロプライエタリのベンダー仕様ソフトウェアにはできないチェックと監査ができるようになるのです。

このようにCCCはオープンな開発モデルをであるLinux Foundationに属しているのであり、TEEに関するソフトウェアプロジェクトにCCCに参加するよう、またオープンソースにするように推進しているのです。

このハードウェアの可動性、業界の受け入れとオープンソースの三つがここ15から20年の技術の変革を促進するものだと考えます。
ブロックチェーン、AI、クラウドコンピューティング、ウェブスケールコンピューティング、ビッグデータ、インターネット販売は全てこの三つが合わさって、今までになかった変革を業界にもたらしたのです。

デフォルトのセキュリティはここ何十年か必要だと訴えられているものですが、まだ達成されていません。正直なところ、それが本当に実現するかはわかりません。

しかし新しい技術が実現することで、業界で、特定のユースケースにセキュリティが浸透することがもっと実用的になり、そこに期待も集まるでしょう。

コンフィデンシャルコンピューティングは次の新しい変革を迎えようとしています。
そして読者の皆さんがその革命に参加する日が来るでしょう。オープンソースなのですから。
元の記事:https://aliceevebob.com/2019/12/03/confidential-computing-the-new-https/
2019年12月3日 Mike Bursell

 

What is DoH, and why should I care?

Firefox is beginning to roll out DoH

DoH is DNS-over-HTTPS.  Let’s break that down.

DNS is Domain Network System, and it’s what allows you to type in the server name (e.g. aliceevebob.com or http://www.redhat.com), which typically makes up the key part of a URL, and then get back the set of numbers which your computer needs actually to contact the machine you want it to talk to.  This is because computers don’t actually use the names, they use the numbers, and the mapping between the two can change, for all sorts of reasons (a server might move to another machine, it might be behind a firewall, it might be behind a load-balancer – those sorts of reasons).   These numbers are called “IP addresses”, and are typically[1] what are called “dotted quads”.  An example would be 127.0.0.1 – in fact, this is a special example, because it maps back to your own machine, so if you ask for “localhost”, then the answer that DNS gives you is “127.0.0.1”.  All IP[1] addresses must be in of the type a.b.c.d, where the a, b, c and d are numbers between 0 and 254 (there are some special rules beyond that, but we won’t go into them here).

Now, your computer doesn’t maintain a list of the millions upon millions of server names and their mappings to specific IP address – that would take too much memory, and ages to download.  Instead, if it needs to find a server (to get email, talk to Facebook, download a webpage, etc.), it will go to a “DNS server”.  Most Internet providers will provide their own DNS servers, and there are a number of special DNS servers to which all others connect from time to time to update their records.  It’s a well-established and generally well-run system across the entire Internet.  Your computer will keep a cache of some of the most recently used mappings, but it’s never going to know all of them across the Internet.

What worries some people about the DNS look-up process, however, is that when you do this look-up, anyone who has access to your network traffic can see where you want to go.  “But isn’t secure browsing supposed to stop that?” you might think.  Well, yes and no.  What secure browsing (websites that start “https://”) means is that nobody with access to your network traffic can see what you download from and transmit to the website itself.  But the initial DNS look-up to find out what server your browser should contact is not encrypted. This might generally  be fine if you’re just checking the BBC news website from the UK, but there are certainly occasions when you don’t want this to be the case.  It turns out although DoH doesn’t completely fix the problem of being able to see where you’re visiting, many organisations (think companies, ISPs, those under the control of countries…) try to block where you can even get to by messing with the responses you get to look-ups.  If your computer can’t even work out where the BBC news server is, then how can it visit it?

DoH – DNS-over-HTTPS – aims to fix this problem.  Rather than your browser asking your computer to do a DNS look-up and give it back the IP address, DoH has the browser itself do the look-up, and do it over a secure connection.  That’s what the HTTPS stands for – “HyperText Transfer Protocol Secure” – it’s what your browser does for all of that other secure traffic (look for the green padlock”).  All someone monitoring your network traffic would see is a connection to a DNS server, but not what you’re asking the DNS server itself.  This is a nice fix, and the system (DoH) is already implemented by the well-known Tor browser.

The reason that I’m writing about it now is that Firefox – a very popular open source browser, used by millions of people across the world – is beginning to roll out DoH by default in a trial of a small percentage of users.  If the trial goes well, it will be available to people worldwide.  This is likely to cause problems in some oppressive regimes, where using this functionality will probably be considered grounds for suspicion on its own, but I generally welcome any move which improves the security of everyday users, and this is definitely an example of one of those.


1 – for IPv4.  I’m not going to start on IPv6: maybe another time.

HSMって何?

セキュリティ強化には重要なHSM。ただ、どのプロジェクトにも当てはまるわけじゃありません。

今週も3文字略語です。(訳注:毎週分まだ訳せてません、頑張ります)

HSM(Hardware Security Module)のお話です。

HSMって何だ?何に使うんだっけ?どうして検討する必要があるの?

その話をする前に、「鍵」特に、暗号鍵について考えてみましょう。

 

最近のほとんどの暗号は、実装されているアルゴリズムは特定の簡単なもの(ブロック暗号)で公開されていますし、一般的にも受け入れられています。

アルゴリズムを知っているかとかどのように動いているかは問題ではないんです。というのは問題になるのは鍵の安全性だからです。

 

例として、AESアルゴリズムでデータを暗号化したいとします。これで特定のタイプの(対称)暗号化ができます。(この例では1つのAESタイプだけ使うこととします。実際はいくつも微妙な違いがあってここでは省きますが、ポイントは変わりません)

 

このアルゴリズムには二つのデータを与えられます:

 

  1. 暗号化したい、平文のデータ
  2. 暗号化するための鍵

 

結果としてでたデータは一つです。

 

  1. 暗号化されたデータ

 

この暗号化されたデータを復号するには、AESアルゴリズムに鍵を入れ込見ます。すると元の平文データが出力されます。

この仕組みは非常によく出来ています。鍵が盗み出さなければ、です。

 

ここでHSMが出てきます。鍵はとても大切です。以下の場合、とても攻撃を受けやすいのです:

 

鍵の作成時:もし、暗号鍵を作成した時にヒントとなるビットを埋め込めたら、そのデータは悪意を持って複合される可能性が高くなります。

 

鍵の使用時:データを暗号化したり複合化している間、鍵はメモリ上にあります。つまり、そのメモリを覗き見ることができれば、データを盗み見ることができます。(下記の「サイドチャネルアタック」参照)

 

鍵の保存時:鍵の保存時にしっかりと保護していない限り、鍵が盗まれる可能性があります。

 

鍵の転送時:鍵を使用する場所と違うところに保存している場合、そこに転送する時に盗みとられる可能性があります。

 

HSMは上記の全ての場合に役立ちます。

これが必要となる理由としては、鍵の作成、使用、保存、転送時に、システムの安全性が不確実な場合があるからです。

 

 もし鍵がメールの暗号化に使われるとして、もしそこに侵入されてしまったらとてもみっともない事態に陥ります。もし、これがあなたが持っている全てのクレジットカードのチップに関するものだったら、もっと大変なことになります。

 

もし、そのコンピュートシステムで十分な権限を持っていれば、その権限者はメモリを見て、鍵を得ることもできます。TEE(Trusted Esxecution Environment

)環境でなければ、の話ですけれどね。

 

もっとタチの悪いことに、メモリを見ることができなくても、暗号鍵(もしくは、暗号化データ、平文データ)に関する情報を引き出して、攻撃を仕掛けることができます。このタイプの攻撃は通常「サイドチャネルアタック」と呼ばれます。

 

これは車のエンジンのシリンダーやバルブと同じようなもので、ボンネットを通してエンジンに耳を澄ますのと同じようなことです。エンジン構造はそのつもりではなかったとしても、エンジン部品からエンジンについての情報を盗み見ることができる、ということです。

HSMはそのような攻撃を防ぐように作られているのです。

 

ではHSMの定義をお話ししましょう。

 

HSMとはハードウェアの一つで、ネットワークやPCIのようなものを介して、システムに付随された暗号化作業を行うことができる保護ストレージを持っています。そしてサイドアタック、物理的にこじ開けようとしたり、コンポーネントに物理ケーブルを差し込んで電気信号を読み取ろうとする、などの色々な攻撃から保護する物理防御機能を持っています。

 

数々のHSMは、色々なタイプの攻撃を耐えられることを証明するため

FIPS140などの標準化の認可を取得しようと検査を受けています。

 

以下にHSMの主な使用方法を挙げます。

 

鍵の作成

鍵の作成は上で述べたように、とても大切な作業です。ただサイドアタックが非常に効果的に行われる部分でもあります。HSMは(比較的)安全な鍵の生成をし、鍵に求められる適度なランダム性があります。

 

鍵の保管

HSMは何者かが侵入しようとした場合に保管されている鍵を破棄するようにできているので、鍵の保管には適しています。

 

暗号化処理

 

鍵をHSMという安全な場所から別のシステムに転送して危険に晒すより、暗号化前の平文をHSMに置いてしまってはどうでしょう(できれば転送する場合には転送用の鍵を使ってです)。そしてHSMにすでにある鍵で暗号化させ、暗号化したデータを送り返せば?(ここでも転送中は転送用の鍵を使います)こうすることで転送中と使用中の攻撃の機会を減らします。これがHSMの鍵の使い方です。

 

通常のコンピューティング処理

 

全てのHSMがこの使い方をサポートするわけではなく(他のほとんどの方法はサポートされますが)、鍵とアルゴリズムたくさん使って機密作業をするのであれば、アプリケーションをHSMで動くように書くことができます。

これは例えばAIやMLのような、前に書いたような古いやり方とは違って、非常に機密性のある場合です。

 

簡単に保証できるものではありませんが、実行環境は往往にして非常に制限があります。「正しい」ことをするのは難しく、間違いを犯すのは簡単です。すると思っていたよりも大変安全性の低いことになります。

 

結論 HSMを使うべき?

 

HSMはPKI(Public Key Infrastructure)プロジェクトなどにはルートオブトラスト(信頼性の基点)としてとてもいいものです。

 

使うのは難しいでしょうが、PKCS#11インターフェース(Public Key Cryptography Standard )を提供しているはずなので、共通化した作業は簡易化されています。機密鍵や暗号化の要件がある場合、HSMをシステムで使うのは賢明な選択ですが、どうやって静的化して使うのはアーキテクチャと設計の段階で必要で、構築の十分前段階でする必要があります。

 

日々のプロビジョニングからプロビジョニングの解除の時まで、HSMの作業は非常に注意して行う必要があることを十分に考慮してください。HSMの使用はとても意味があることですがとても高価で拡張性は多くの場合あまりありません。

 

HSMはとても機密性の高いデータとその作業を行うというユースケースには特に最適ですが、軍用や政府、ファイナンスに使われることが多いのです。

HSMは全てのプロジェクトに合うものではないのですが、機密システムの設計と運用の武装化に大切なものなのです。

 

元の記事:https://aliceevebob.com/2019/06/11/whats-an-hsm/

2019年6月11日 Mike Bursell

 

タグ:セキュリティ

HSMって何?

セキュリティ強化には重要なHSM。ただ、どのプロジェクトにも当てはまるわけじゃありません

この記事は https://aliceevebob.com/2019/06/11/whats-an-hsm/ を翻訳したものです。

 
今週も3文字略語です。(訳注:毎週分まだ訳せてません、頑張ります)
HSM(Hardware Security Module)のお話です。
HSMって何だ?何に使うんだっけ?どうして検討する必要があるの?
その話をする前に、「鍵」特に、暗号鍵について考えてみましょう。

最近のほとんどの暗号は、実装されているアルゴリズムは特定の簡単なもの(ブロック暗号)で公開されていますし、一般的にも受け入れられています。
アルゴリズムを知っているかとかどのように動いているかは問題ではないんです。というのは問題になるのは鍵の安全性だからです。

例として、AESアルゴリズムでデータを暗号化したいとします。これで特定のタイプの(対称)暗号化ができます。(この例では1つのAESタイプだけ使うこととします。実際はいくつも微妙な違いがあってここでは省きますが、ポイントは変わりません)

このアルゴリズムには二つのデータを与えられます:

1. 暗号化したい、平文のデータ
2. 暗号化するための鍵

結果としてでたデータは一つです。

1. 暗号化されたデータ

この暗号化されたデータを復号するには、AESアルゴリズムに鍵を入れ込見ます。すると元の平文データが出力されます。
この仕組みは非常によく出来ています。鍵が盗み出さなければ、です。

ここでHSMが出てきます。鍵はとても大切です。以下の場合、とても攻撃を受けやすいのです:

- 鍵の作成時:もし、暗号鍵を作成した時にヒントとなるビットを埋め込めたら、そのデータは悪意を持って複合される可能性が高くなります。

- 鍵の使用時:データを暗号化したり複合化している間、鍵はメモリ上にあります。つまり、そのメモリを覗き見ることができれば、データを盗み見ることができます。(下記の「サイドチャネルアタック」参照)

- 鍵の保存時:鍵の保存時にしっかりと保護していない限り、鍵が盗まれる可能性があります。

- 鍵の転送時:鍵を使用する場所と違うところに保存している場合、そこに転送する時に盗みとられる可能性があります。

HSMは上記の全ての場合に役立ちます。
これが必要となる理由としては、鍵の作成、使用、保存、転送時に、システムの安全性が不確実な場合があるからです。

 もし鍵がメールの暗号化に使われるとして、もしそこに侵入されてしまったらとてもみっともない事態に陥ります。もし、これがあなたが持っている全てのクレジットカードのチップに関するものだったら、もっと大変なことになります。

もし、そのコンピュートシステムで十分な権限を持っていれば、その権限者はメモリを見て、鍵を得ることもできます。TEE(Trusted Esxecution Environment
)環境でなければ、の話ですけれどね。

もっとタチの悪いことに、メモリを見ることができなくても、暗号鍵(もしくは、暗号化データ、平文データ)に関する情報を引き出して、攻撃を仕掛けることができます。このタイプの攻撃は通常「サイドチャネルアタック」と呼ばれます。

これは車のエンジンのシリンダーやバルブと同じようなもので、ボンネットを通してエンジンに耳を澄ますのと同じようなことです。エンジン構造はそのつもりではなかったとしても、エンジン部品からエンジンについての情報を盗み見ることができる、ということです。
HSMはそのような攻撃を防ぐように作られているのです。

ではHSMの定義をお話ししましょう。

HSMとはハードウェアの一つで、ネットワークやPCIのようなものを介して、システムに付随された暗号化作業を行うことができる保護ストレージを持っています。そしてサイドアタック、物理的にこじ開けようとしたり、コンポーネントに物理ケーブルを差し込んで電気信号を読み取ろうとする、などの色々な攻撃から保護する物理防御機能を持っています。

数々のHSMは、色々なタイプの攻撃を耐えられることを証明するため
FIPS140などの標準化の認可を取得しようと検査を受けています。

以下にHSMの主な使用方法を挙げます。
鍵の作成
鍵の作成は上で述べたように、とても大切な作業です。ただサイドアタックが非常に効果的に行われる部分でもあります。HSMは(比較的)安全な鍵の生成をし、鍵に求められる適度なランダム性があります。

鍵の保管
HSMは何者かが侵入しようとした場合に保管されている鍵を破棄するようにできているので、鍵の保管には適しています。

暗号化処理
鍵をHSMという安全な場所から別のシステムに転送して危険に晒すより、暗号化前の平文をHSMに置いてしまってはどうでしょう(できれば転送する場合には転送用の鍵を使ってです)。そしてHSMにすでにある鍵で暗号化させ、暗号化したデータを送り返せば?(ここでも転送中は転送用の鍵を使います)こうすることで転送中と使用中の攻撃の機会を減らします。これがHSMの鍵の使い方です。

通常のコンピューティング処理
全てのHSMがこの使い方をサポートするわけではなく(他のほとんどの方法はサポートされますが)、鍵とアルゴリズムたくさん使って機密作業をするのであれば、アプリケーションをHSMで動くように書くことができます。
これは例えばAIやMLのような、前に書いたような古いやり方とは違って、非常に機密性のある場合です。

簡単に保証できるものではありませんが、実行環境は往往にして非常に制限があります。「正しい」ことをするのは難しく、間違いを犯すのは簡単です。すると思っていたよりも大変安全性の低いことになります。

結論 HSMを使うべき?

HSMはPKI(Public Key Infrastructure)プロジェクトなどにはルートオブトラスト(信頼性の基点)としてとてもいいものです。

使うのは難しいでしょうが、PKCS#11インターフェース(Public Key Cryptography Standard )を提供しているはずなので、共通化した作業は簡易化されています。機密鍵や暗号化の要件がある場合、HSMをシステムで使うのは賢明な選択ですが、どうやって静的化して使うのはアーキテクチャと設計の段階で必要で、構築の十分前段階でする必要があります。

日々のプロビジョニングからプロビジョニングの解除の時まで、HSMの作業は非常に注意して行う必要があることを十分に考慮してください。HSMの使用はとても意味があることですがとても高価で拡張性は多くの場合あまりありません。

HSMはとても機密性の高いデータとその作業を行うというユースケースには特に最適ですが、軍用や政府、ファイナンスに使われることが多いのです。
HSMは全てのプロジェクトに合うものではないのですが、機密システムの設計と運用の武装化に大切なものなのです。
元の記事:https://aliceevebob.com/2019/06/11/whats-an-hsm/
2019年6月11日 Mike Bursell

 

What’s an HSM?

HSMs are not right for every project, but form an important part of our armoury.

HSMって何?

Another week, another TLA[1].  This time round, it’s Hardware Security Module: an HSM.  What, then, is an HSM, what is it used for, and why should I care?  Before we go there, let’s think a bit about keys: specifically, cryptographic keys.

The way that most cryptography works these days is that the algorithms to implement a particular primitive[3] are public, and it’s generally accepted that it doesn’t matter whether you know what the algorithm is, or how it works, as it’s the security of the keys that matters.  To give an example: I plan to encrypt a piece of data under the AES algorithm[4], which allows for a particular type of (symmetric) encryption.  There are two pieces of data which are fed into the algorithm:

  1. the data you want to encrypt (the cleartext);
  2. a key that you’ve chosen to encrypt it.

Out comes one piece of data:

  1. the encrypted text (the ciphertext).

In order to decrypt the ciphertext, you feed that and the key into the AES algorithm, and the original cleartext comes out.  Everything’s great – until somebody gets hold of the key.

This is where HSMs come in.  Keys are vital, and they are vulnerable:

  • at creation time – if I can trick you into creating a key some of whose bits I can guess, I increase my chances of being able to decrypt your ciphertext;
  • during use – while you’re doing the encryption or decryption of your data, your key will be in memory, which means that if I can snoop into that memory, I can get it (see also below for information on “side channel attacks”;
  • while stored – unless you protect your key while it’s “at rest”, and waiting to be used, I may have opportunities to get it.
  • while being transferred – if you store your keys somewhere different to the place in which you’re using it, I may have an opportunity to intercept it as it moves to the place it will be used.

HSMs can help in one way or another with all of these pieces, but why do we need them?  The key reason is that there are times when you can’t be certain that the system(s) you are using for creating, using, storing and transferring keys are as secure as you’d like.  If the keys we’re talking about are for encrypting a few emails between you and your spouse, well, you might find it embarrassing if they were compromised, but if these keys are ones from which, say, you derive all of the credit cards chip keys for an entire bank, then you have a rather larger problem.  When it comes down to it, somebody with sufficient privilege on a standard computing system can look at any part of memory – unless there’s a TEE[5] (Oh, how I love my TEE (or do I?)) – and if they can look at the memory, they can see the key.

Worse than this, there are occasions when even if you can’t see into memory, you might be able to derive enough information about a key – or the ciphertext or cleartext – to be able to mount an attack on it.  Attacks of this type are generally called “side channel attacks”, and you can think of them as a little akin to being able to work out the number of cylinders and valves a car[6] engine has by listening to it through the bonnet[7].  The engine leaks information about itself, even though it’s not designed with that in mind.  HSMs are (generally) good at preventing both types of attacks: it’s what they’re designed to do.

Here, then, is a definition:

An HSM is piece of hardware with protected storage which can perform cryptographic operations attached to a system – via a network connection or other connection such as PCI – and which has physical protection from various attacks, from side attacks to somebody physically levering open the case and attaching wires to important components so that they can read the electrical signals.

Many HSMs undergo testing to get certification against certain standards such as “FIPS 140” to show their ability to withstand various types of attack.

Here are the main uses for HSMs.

Key creation

Creation of keys is, as alluded to above, a very important operation, and one where side attacks have proved very effective in the past.  HSMs can provide safe(r) key generation, and ensure appropriate levels of randomness (entropy) for the required strength of key.

Key storage

HSMs are typically designed so that if somebody tries to break into them, they will delete any keys which are stored within them, so they’re a good place to store your keys.

Cryptographic operations

Rather than putting your keys at risk by transferring them to another system, and away from the safety of the HSM, why not move the cleartext to the HSM (encrypted under a transport key, preferably), get the HSM to do the encryption with the keys that it already holds, and then send the ciphertext back (encrypted under a transport key[8])?  This reduces opportunities for attacks during transport and during use, and is a key use for HSMs.

General computing operations

Not all HSMs support this use (almost all will support the others), but if you have sensitive operations with lots of keys and algorithms – which, in the case of AI/ML, for instance, may be sensitive (unlike the cryptographic primitives we were talking about before), then it is possible to write applications specifically to run on an HSM.  This is not a simple undertaking, however, as the execution environment provided is likely to be constrained.  It is difficult to do “right”, and easy to make mistakes which may leave you with a significantly less secure environment than you had thought.

Conclusion – should I use HSMs?

HSMs are excellent as roots of trust for PKI [9] projects and similar.  Using them can be difficult, but most these days should provide a PKCS#11 interface which simplifies the most common operations.  If you have sensitive key or cryptographic requirements, designing HSM use into your system can be a sensible step, but knowing how best to use them must be part of the architecture and design stages, well before implementation.  You should also take into account that operation of HSMs must be managed very carefully, from provisioning through everyday use to de-provisioning.  Use of an HSM in the cloud may make sense, but they are expensive and do not scale particularly well.

HSMs, then, are suited to very particular use cases of highly sensitive data and operations – it is no surprise that their deployment is most common within military, government and financial settings. HSMs are not right for every project, by any means, but form an important part of our armoury for the design and operation of sensitive systems.


1 – Three Letter Acronym[2]

2 – keep up, or we’ll be here for some time.

3 – cryptographic building block.

4 – let’s pretend there’s only one type of AES for the purposes of this example.  In fact, there are a number of nuances around this example which I’m going to gloss over, but which shouldn’t be important for the point I’m making.

5 – Trusted Execution Environment.

6 – automobile, for our North American friends.

7 – hood.  Really, do we have to do this every time?

8 – why do you need to encrypt something that’s already encrypted?  Because you shouldn’t use the same key for two different operations.

9 – Public Key Infrastructure.

Are my messages safe? No, but…

“Are any of these messaging services secure?”

Today brought another story about insecurity of a messenger app, and by a brilliant coincidence, I’m listening to E.L.O.’s “Secret Messages” as I start to compose this post. This article isn’t, however, about my closet 70s musical tastes[1], but about the messages you send from your mobile phone, tablet or computer to friends, families and colleagues, and how secure they are.

There are loads of options out there for messaging services, with some of the better-known including WhatsApp, Facebook Messenger, Google Chat, Signal and Telegram. Then there’s good old SMS. First question first: do I use any of these myself? Absolutely. I also indulge in Facebook, LinkedIn and Twitter. Do I trust these services? Let’s get back to this question later.

A more pressing question might be: “are any of these messaging services secure?” It turns out that this is a really simple question to answer: of course they’re not. No service is “secure”: it’s a key principle of IT security that there is no “secure”. This may sound like a glib – and frankly unhelpful – answer, but it’s not supposed to be. Once you accept that there is no perfectly secure system, you’re forced to consider what you are trying to achieve, and what risks you’re willing to take. This is a recurring theme of this blog, so regular readers shouldn’t be surprised.

Most of the popular messaging services can be thought of as consisting of at least seven components. Let’s assume that Alice is sending a message from her phone to Bob’s phone. Here’s what the various components might look like:

  1. Alice’s messenger app
  2. Alice’s phone
  3. Communications channel Alice -> server
  4. Server
  5. Communications channel server -> Bob
  6. Bob’s phone
  7. Bob’s messenger app

Each of these is a possible attack surface: combined, they make up the attack surface for what we can think of as the Alice <-> Bob and messaging system.

Let’s start in the middle, with the server. For Alice and Bob to be happy with the security of the system for their purposes, they must be happy that this server has sufficiently secure to cope with whatever risks they need to address. So, it may be that they trust that the server (which will be run, ultimately, by fallible and possibly subornable humans who also are subject to legal jurisdiction(s)) is not vulnerable. Not vulnerable to whom? Hacktivists? Criminal gangs? Commercial competitors? State actors? Legal warrants from the server’s jurisdiction? Legal warrants from Alice or Bob’s jurisdiction(s)? The likelihood of successful defence against each of these varies, and the risk posed to Alice and Bob by each is also different, and needs to be assessed, even if that assessment is “we can ignore this”.

Each of the other components is subject to similar questions. For the communication channels, we will assume that they’re encrypted, but we have to be sure that the cryptography and cryptographic protocols have been correctly implemented, and that all keys are appropriately protected by all parties. The messaging apps must be up to date, well designed and well implemented. Obviously, if they’re open source, you have a much, much better chance of being sure of the security of both software (never, ever use cryptography or protocols which have not been not open sourced and peer reviewed: just don’t). The phones in which the software is running must also be uncompromised – not to mention protected by Alice and Bob from physical tampering and delivered new to them from the manufacturer with no vulnerabilities[2].

How sure are Alice and Bob of all of the answers to all of these questions? The answer, I would submit, is pretty much always going to be “not completely”. Does this mean that Alice and Bob should not use messaging services? Not necessarily. But it does mean that they should consider what messages they should exchange via any particular messaging service. They might be happy to arrange a surprise birthday party for a colleague, but not to exchange financial details of a business deal. They might be happy to schedule a trip to visit a Non-Governmental Organisation to discuss human rights, but not to talk about specific cases over the messaging service.

This is the view that I take: I consider what information I’m happy to transfer over or store on messaging services and social media platforms. There are occasions where I may happy to pass sensitive data across messaging services, but break the data up between different services (using “different channels” in the relevant parlance): using one service for a username and another for the associated password, for instance. I still need to be careful about shared components: the two phones in the example above might qualify, but I’ve reduced the shared attack surface, and therefore the risk. I’m actually more likely to require that the password is exchanged over a phone call, and if I’m feeling particularly paranoid, I’ll use a different phone to receive that call.

My advice, therefore, is this:

  1. Keep your devices and apps up to date;
  2. Evaluate the security of your various messaging service options;
  3. Consider the types of information that you’ll be transferring and/or storing;
  4. Think about the risks you’re willing to accept;
  5. Select the appropriate option on a case by case basis:
  6. Consider using separate channels where particularly sensitive data can be split for added security.

1 – I’m also partial to 1920’s Jazz and a bit of Bluegrass, as it happens.

2 – yeah, right.

Cryptographers arise!

Cryptography is a strange field, in that it’s both concerned with keeping secrets, but also has a long history of being kept secret, as well.  There are famous names from the early days, from Caesar (Julius, that is) to Vigenère, to more recent names like Diffie, Hellman[1], Rivest, Shamir and Adleman.  The trend even more recently has been away from naming cryptographic protocols after their creators, and more to snappy names like Blowfish or less snappy descriptions such as “ECC”.  Although I’m not generally a fan of glorifying individual talent over collective work, this feels like a bit of a pity in some ways.

In fact, over the past 80 years or so, more effort has been probably put into keeping the work of teams in cryptanalysis – the study of breaking cryptography – secret, though there are some famous names from the past like Al-Kindi, Phelippes (or “Phillips), Rejewski, Turing, Tiltman, Knox and Briggs[2].

Cryptography is difficult.  Actually, let me rephrase that: cryptography is easy to do badly, and difficult to do well.  “Anybody can design a cipher that they can’t break”, goes an old dictum, with the second half of the sentence, “and somebody else can easily break”, being generally left unsaid.  Creation of cryptographic primitives requires significant of knowledge of mathematics – some branches of which are well within the grasp of an average high-school student, and some of which are considerably more arcane.  Putting those primitives together in ways that allow you to create interesting protocols for use in the real world doesn’t necessarily require that you understand the full depth of the mathematics of the primitives that you’re using[3], but does require a good grounding in how they should be used, and how they should not be used.  Even then, a wise protocol designer, like a wise cryptographer[4], always gets colleagues and others to review his or her work.  This is one of the reasons that it’s so important that cryptography should be in the public domain, and preferably fully open source.

Why am I writing about this?  Well, partly because I think that, on the whole, the work of cryptographers is undervalued.  The work they do is not only very tricky, but also vital.  We need cryptographers and cryptanalysts to be working in the public realm, designing new algorithms and breaking old (and, I suppose) new ones.  We should be recognising and celebrating their work.  Mathematics is not standing still, and, as I wrote recently, quantum computing is threatening to chip away at our privacy and secrecy.  The other reasons that I’m writing about this is because I think we should be proud of our history and heritage, inspired to work on important problems, and to inspire those around us to work on them, too.

Oh, and if you’re interested in the t-shirt, drop me a line or put something in the comments.


1 – I’m good at spelling, really I am, but I need to check the number of ells and ens in his name every single time.

2 – I know that is heavily Bletchley-centric: it’s an area of history in which I’m particularly interested.  Bletchley was also an important training ground for some very important women in security – something of which we have maybe lost sight.

3 – good thing, too, as I’m not a mathematician, but I have designed the odd protocol here and there.

4 – that is, any cryptographer who recognises the truth of the dictum I quote above.

Will quantum computing break security?

Do you want J. Random Hacker to be able to pretend that they’re your bank?

Over the past few years, a new type of computer has arrived on the block: the quantum computer.  It’s arguably the sixth type of computer:

  1. humans – before there were artificial computers, people used, well, people.  And people with this job were called “computers”.
  2. mechanical analogue – devices such as the Antikythera mechanism, astrolabes or slide rules.
  3. mechanical digital – in this category I’d count anything that allowed discrete mathematics, but didn’t use electronics for the actual calculation: the abacus, Babbage’s Difference Engine, etc.
  4. electronic analogue – many of these were invented for military uses such as bomb sights, gun aiming, etc.
  5. electronic digital – I’m going to go out on a limb here, and characterise Colossus as the first electronic digital computer[1]: these are basically what we use today for anything from mobile phones to supercomputers.
  6. quantum computers – these are coming, and are fundamentally different to all of the previous generations.

What is quantum computing?

Quantum computing uses concepts from quantum mechanics to allow very different types of calculations to what we’re used to in “classical computing”.  I’m not even going to try to explain, because I know that I’d do a terrible job, so I suggest you try something like Wikipedia’s definition as a starting point.  What’s important for our purposes is to understand that quantum computers use qubits to do calculations, and for quite a few types of mathematical algorithms – and therefore computing operations – they can solve problems much faster than classical computers.

What’s “much faster”?  Much, much faster: orders of magnitude faster.  A calculation that might take years or decades with a classical computer could, in certain circumstances, take seconds.  Impressive, yes?  And scary.  Because one of the types of problems that quantum computers should be good at solving is decrypting encrypted messages, even without the keys.

This means that someone with a sufficiently powerful quantum computer should be able to read all of your current and past messages, decrypt any stored data, and maybe fake digital signatures.  Is this a big thing?  Yes.  Do you want J. Random Hacker to be able to pretend that they’re your bank[2]?  Do you want that transaction on the blockchain where you were sold a 10 bedroom mansion in Mayfair to be “corrected” to be a bedsit in Weston-super-Mare[3]?

Some good news

This is all scary stuff, but there’s good news, of various types.

The first is that in order to make any of this work at all, you need a quantum computer with a good number of qubits operating, and this is turning out to be hard[4].  The general consensus is that we’ve got a few years before anybody has a “big” enough quantum computer to do serious damage to classical encryption algorithms.

The second is that, even with a sufficient number of qubits to attacks our existing algorithms, you still need even more in order to allow for error correction.

The third is that although there are theoretical models to show how to attack some of our existing algorithms, actually making them work is significantly harder than you or I[5] might expect.  In fact, some of the attacks may turn out to be infeasible, or just take more years to perfect that we’d worried about.

The fourth is that there are clever people out there who are designing quantum-computation resistant algorithms (sometimes referred to as “post-quantum algorithms”) that we can use, at least for new encryption, once they’ve been tested and become widely available.

All-in-all, in fact, there’s a strong body of expert opinion that says that we shouldn’t be overly worried about quantum computing breaking our encryption in the next 5 or even 10 years.

And some bad news

It’s not all rosy, however.  Two issues stick out to me as areas of concern.

  1. People are still designing and rolling out systems which don’t consider the issue.  If you’re coming up with a system which is likely to be in use for ten or more years, or which will be encrypting or signing data which must remain confidential or attributable over those sorts of periods, then you should be considering what the possible impact of quantum computing may have on your system.
  2. some of the new, quantum-computing resistant algorithms are proprietary.  This means that when you and I want to start implementing systems which are designed to be quantum-computing resistant, we’ll have to pay to do so.  I’m a big proponent of open source, and particularly of open source cryptography, and my big worry is that we just won’t be able to open source these things, and worse, that when new protocol standards are created – either de facto or through standards bodies – they will choose proprietary algorithms that exclude the use of open source, whether on purpose, through ignorance, or because few good alternatives are available.

What to do?

Luckily, there are things you can do to address both of the issues above.  The first is to think and plan, when designing a system, about what the impact of quantum computing might be on it.  Often – very often – you won’t actually need to implement anything explicit now (and it could be hard to, given the current state of the art), but you should at least embrace the concept of crypto-agility: designing protocols and systems so that you can swap out algorithms if required[7].

The second is a call to arms: get involved in the open source movement, and encourage everybody you know who has anything to do with cryptography to rally for open standards and for research into non-proprietary, quantum-computing resistant algorithms.  This is something that’s very much on my to-do list, and an area where pressure and lobbying is just as important as the research itself.


1 – I think it’s fair to call it the first electronic, programmable computer.  I know there were earlier non-programmable ones, and that some claim ENIAC, but I don’t have the space or the energy to argue the case here.

2 – no.

3 – see [2].  Don’t get me wrong, by the way – I grew up near Weston-super-Mare, and it’s got things going for it, but it’s not Mayfair.

4 – and if a quantum physicist says that something’s hard, then, to my mind, it’s hard.

5 – and I’m assuming that neither of us is a quantum physicist or mathematician[6].

6 – I’m definitely not.

7 – and not just for quantum-computing reasons: there’s a good chance that some of our existing classical algorithms may just fall to other, non-quantum attacks such as new mathematical approaches.