On holiday

Lots of people in the InfoSec world are at Black Hat and Def Con in Las Vegas this week, and there are more stories out there than you can shake a stick at.  I’m on holiday, and although it’s not as if I’m disinterested, I’ve decided to take the whole “not working” thing seriously, and I’m not going to blog about any of them this week.

Defending our homes

Your router is your first point of contact with the Internet: how insecure is it?

I’ve always had a problem with the t-shirt that reads “There’s no place like 127.0.0.1”. I know you’re supposed to read it “home”, but to me, it says “There’s no place like localhost”, which just doesn’t have the same ring to it. And in this post, I want to talk about something broader: the entry-point to your home network, which for most people will be a cable or broadband router[1].  The UK and US governments just published advice that “Russia”[2] is attacking routers.  This attack will be aimed mostly, I suspect, at organisations (see my previous post What’s a State Actor, and should I care?), rather than homes, but it’s a useful wake-up call for all of us.

What do routers do?

Routers are important: they provide the link between one network (in this case, our home network) and another one (in this case, the Internet, via our ISP’s network.  In fact, for most of us, the box we think of as “the router”[3] is doing a lot more than that.  The “routing” bit is what is sounds like: it helps computers on your network to find routes to send data to computers outside the network – and vice-versa, for when you’re getting data back.  But most routers will actual be doing more than that.  The other purpose that many will be performing is that of a modem.  Most of us [4] connect to the Internet via a phoneline – whether cable or standard landline – though there is a growing trend for mobile Internet to the home.  Where you’re connecting via a phone line, there’s a need to convert the signals that we use for the Internet to something else and then (at the other end) back again.  For those of us old enough to remember the old “dial-up” days, that’s what the screechy box next to your computer used to do.

But routers often do more things as, well.  Sometimes many more things, including traffic logging, being an WiFi access point, providing a VPN for external access to your internal network, child access, firewalling and all the rest.

Routers are complex things these days, and although state actors may not be trying to get into them, other people may.

Does this matter, you ask?  Well, if other people can get into your system, they have easy access to attacking your laptops, phones, network drives and the rest.  They can access and delete unprotected personal data.  They can plausibly pretend to be you.  They can use your network to host illegal data or launch attacks on others.  Basically, all the bad things.

Luckily, routers tend to come set up by your ISP, with the implication being that you can leave them, and they’ll be nice and safe.

So we’re safe, then?

Unluckily, we’re really not.

The first problem is that the ISPs are working on a budget, and it’s in their best interests to provide cheap kit which just does the job.  The quality of ISP-provided routers tends to be pretty terrible.  It’s also high on the list of things to try to attack by malicious actors: if they know that a particular router model will be installed in a several million homes, there’s a great incentive to find an attack, as an attack on that model will be very valuable to them.

Other problems that arise include:

  • slowness to fix known bugs or vulnerabilities – updating firmware can be costly to your ISP, so they may be slow to arrive (if they do at all);
  • easily-derived or default admin passwords, meaning that attackers don’t even need to find a real vulnerability – they can just log in.

 

Measures to take

Here’s a quick list of steps you can take to try to improve the security of your first hop to the Internet.  I’ve tried to order them in terms of ease – simplest first.  Before you do any of these, however, save the configuration data so that you can bring it back if you need it.

  1. Passwords – always, always, always change the admin password for your router.  It’s probably going to be one that you rarely use, so you’ll want to record it somewhere.  This is one of the few times where you might want to consider taping it to the router itself, as long as the router is in a secure place where only authorised people (you and your family[5]) have access.
  2. Internal admin access only – unless you have very good reasons, and you know what you’re doing, don’t allow machines to administer the router unless they’re on your home network.  There should be a setting on your router for this.
  3. Wifi passwords – once you’ve done 2., you need to ensure that wifi passwords on your network – whether set on your router or elsewhere – are strong.  It’s easy to set a “friendly” password so that it’s easy for visitors to connect to your network, but if it’s guessed by a malicious person who happens to be nearby, the first thing they’ll do will be to look for routers on the network, and as they’re on the internal network they’ll have access to it (hence why 1 is important).
  4. Only turn on functions that you understand and need – as I noted above, modern routers have all sorts of cool options.  Disregard them.  Unless you really need them, and you actually understand what they do, and what the dangers of turning them on are, then leave them off.  You’re just increasing your attack surface.
  5. Buy your own router – replace your ISP-supplied router with a better one.  Go to your local computer store and ask for suggestions.  You can pay an awful lot, but you can conversely get something fairly cheap that does the job and is more robust, performant and easy to secure than the one you have at the moment.  You may also want to buy a separate modem.  Generally setting up your own modem or router is simple, and you can copy the settings from the ISP-supplied one and it will “just work”.
  6. Firmware updates – I’d love to have this further up the list, but it’s not always easy.  From time to time, firmware updates appear for your router.  Most routers will check automatically, and may prompt you to update when you next log in.  The problem is that failure to update correctly can cause catastrophic results[6], or lose configuration data that you’ll need to re-enter.  But you really do need to consider doing this, and keeping a look-out of firmware updates which fix severe security issues.
  7. Go open source – there are some great open source router projects out there which allow you to take an existing router and replace all of the firmware/software on it with an open source alternative.  You can find a list of at least some of them on Wikipedia – https://en.wikipedia.org/wiki/List_of_router_firmware_projects, and a search on “router” on Opensource.com will open your eyes to a set of fascinating opportunities.  This isn’t a step for the faint-hearted, as you’ll definitely void the warranty on your existing router, but if you want to have real control, open source is always the way to go.

Other issues…

I’d love to pretend that once you’ve improved the security of your router, that all’s well and good, but it’s not on your home network..  What about IoT devices in your home (Alexa, Nest, Ring doorbells, smart lightbulbs, etc.?)  What about VPNs to other networks?  Malicious hosts via Wifi, malicious apps on your childrens phones…?

No – you won’t be safe.  But, as we’ve discussed before, although there is no “secure”, that doesn’t mean that we shouldn’t raise the bar and make it harder for the Bad Folks[tm].

 


1 – I’m simplifying – but read on, we’ll get there.

2 -“Russian State-Sponsored Cyber Actors”

3 – or, in my parents’ case, “the Internet box”, I suspect.

4 – this is one of these cases where I don’t want comments telling me how you have a direct 1 Terabit/s connection to your local backbone, thank you very much.

5 – maybe not the entire family.

6 – your router is now a brick, and you have no access to the Internet.

The Other CIA: Confidentiality, Integrity and Availability

Any type of even vaguely useful system will hold, manipulate or use data.

I spend a lot of my time on this blog talking about systems, because unless you understand how your systems work as a set of components, you’re never going to be able to protect and manage them.  Today, however, I want to talk about security of data – the data in the systems.  Any type of even vaguely useful system will hold, manipulate or use data in some way or another[1], and as I’m interested[2] in security, I think it’s useful to talk about data and data security.  I’ve touched on this question in previous articles, but one recent one, What’s a State Actor, and should I care? had a number of people asking me for more detail on some of the points I raised, and as one of them was the classic “C.I.A.” model around data security, I thought I’d start there.

The first point I should make is that the “CIA triad” is sometimes over-used.  You really can’t reduce all of information security to confidentiality, integrity and availability – there are a number of other important principles to consider.  These three arguably don’t even cover all the issues you’d want to consider around data security – what, for instance, about data correctness and consistency, for example? – but I’ve always found them to be a useful starting point, so as long as we don’t kid ourselves into believing that they’re all we need, they are useful to hold in mind.   They are, to use a helpful phrase, “necessary but not sufficient”.

We should also bear in mind that for any particular system, you’re likely to have various types and sets of data, and these types and sets may have different requirements.  For instance, a database may store not only key data about, for instance, museum exhibits, but will also store data about who can update the key data, and even metadata about that – this might[3] include information about a set of role-based access controls (RBAC), and the security requirements for this will be different to the security requirements for thee key data.  So, when we’re considering the data security requirements of a system, don’t assume that they will be uniform across all data sets.

Confidentiality

Confidentiality is quite an easy one to explain.  If you don’t want everybody to be able to see a set of data, then you wish it to be confidential with regards to at least some entities – whether they be people or systems entities, internal or external.  There are a number of ways to implement confidentiality, the most obvious being encryption of data, but there are other approaches, of which the easiest is just denying access to data through physical, geographical or other authorisation controls.

When you might care that data is confidentiality-protected: health records, legal documents, credit card details, financial information, firewall rules, system administrator rights, passwords.

When you might not care that data is confidentiality-protected: sports records, examination results, open source code, museum exhibit information, published company financial results.

Integrity

Integrity, when used as a term in this context, is slightly different to its standard usage. The property we’re looking for is not the same integrity that we expect[4] from our politicians, but is that data has not been changed from what it should be.  Data is often useless unless it can be changed – we want to update information about our museum exhibits from time to time, for instance – but who can change it, and when, are the sort of things we want to control.  Equally important may be the type of changes that can be made to it: if I have a careful classification scheme for my Tudor music manuscripts, I don’t want somebody putting in binary data which means nothing to me or our visitors.

I struggled to think of any examples when you wouldn’t want to protect the integrity of your data from at least some entities, as if data can be changed willy-nilly[5], it seems be worthless.  It did occur to me, however, that as long as you have integrity-protected records of what has been changed, you’re probably OK.  That’s the model for some open source projects or collaborative writing endeavours, for example.

[Discursion – Open source projects don’t generally allow you to scribble directly onto the main “approved” store – whose integrity is actually very important.  That’s why software projects – proprietary or open source – have for decades used source control systems or versioning systems.  One of the success criteria for scaling an open source project is a consensus on integrity management.]

Availability

Availability is the easiest of the triad to ignore when you’re designing a system.  When you create data, it’s generally useless unless the entities that need it can get to it when they need it.  That doesn’t mean that all systems need to have 100% up-time, or even that particular data sets need to be available for 100% of the up-time of the system, but when you’re designing a system, you need to decide what’s going to be appropriate, and how to manage with degradation.  Why degradation?  Because one of the easiest ways to affect the availability of data is to slow down access to it – as described in another recent post What’s your availability? DoS attacks and more.  If I’m using a mobile app to view information about museum exhibits in real-time, and it takes five minutes for me to access the description, then things aren’t any good.  On the other hand, if there’s some degradation of the service, and I can only access the first paragraph of the description, with an apology for the inconvenience and a link to other information, that might be acceptable.  From a different point of view, if I notice that somebody is attacking my museum system, but I can’t get into it with administrative access to lock it down or remove their access, that’s definitely bad.

As with integrity protection, it’s difficult to think of examples when availability protection isn’t important, but availability isn’t necessarily a binary condition: it may vary from time to time.

Conclusion

Although they’re not perfect descriptions of all the properties you need to consider when designing in data security, confidentiality, integrity and availability should at least cause you to start thinking about what your data is for, how it should be accessed, how it should be changed, and by whom.


1 – I just know that somebody’s going to come up with a counter-example.

2 – And therefore assume that you, the reader, are interested.

3 – as a nested example, which is quite nice, as we’re talking about metadata.

4 – And far too rarely get, it seems.

5 – Not a rude phrase, even if it sounds like it should be.  Look it up if you don’t believe me.