What’s an attack surface?

“Reduce your attack surface,” they say. But what is it?

“Reduce your attack surface,” they[1] say.  But what is it?  The instruction to reduce your attack surface is one of the principles of IT security, so it must be a Good Thing[tm].  The problem is that it’s not always clear what an attack surface actually is.

I’m going to go for the broadest possible description I can think of, or nearly, because I’m pretty paranoid, and because I’m not convinced that the Wikipedia definition[2] is sufficient[3].  Although I’ll throw in a few examples of how to reduce attack surfaces, the purpose of this post is really to explain what one is, rather than to help protect you – but a good understanding really is required before you start with anything else, so hopefully this will be useful.

So, here’s my start at a definition:

  • The attack surface of a system is the sum of areas where attacks could be launched against it.

That feels a little bit circular – let’s define some terms.  First of all, what’s an an “area” in this definition?  Well, I’d say that any particular component of a system may have many points of possible vulnerability – and therefore attack.  The sum of those points is an area – and the sum of the areas of the different components of a system gives us our system’s attack surface.

To understand better, we’re going to have to talk about systems – one of my favourite topics[4] – because I think it’s important to clarify a key difference between the attack surface of a component considered alone, and the area that a component adds when part of a system.  They will not generally be the same.

Here’s an example: you’re deploying an Operating System.  Let’s look at two options for deployment, and compare the attack surfaces.  In both cases, I’m going to take a fairly restricted look at points of vulnerability, excluding, for instance, human factors, as I don’t want to get bogged down in the details.

Deployment one – bare metal

You install your Operating System onto a physical machine, and plug it into the network.  What are some of the attack points?

  • your network connection
  • the physical hardware
  • services which are listening on the network connection
  • connections via USB – keyboard and mouse, for example.

There are more, but this should give us enough to do some comparisons.  I’d generally think of the attack surface as being associated with the physical bounds of the hardware, with the addition of the network port and USB connections.

How can we reduce the attack surface?  Well, we could unplug the network connection – though that might significantly reduce the efficacy of the system! – or we might take steps to reduce the number of services listening on the connection, to reduce the privilege level at which they run, or increase the authentication requirements for connecting to them.  We could reduce our surface area by using a utility such as “usbguard” to restrict USB connections, and, if we’re worried about physical access to the machine, we could put it in a locked cabinet somewhere.  These are all useful and appropriate ways to reduce our system’s attack surface.

Deployment two – a Virtual Machine

In this deployment scenario, we’re going to install the Operating System onto a Virtual Machine (VM), running on a physical host.  What does my attack surface look like now?  Well, that rather depends on how you define your system.  You could, of course, look at the wider system – the VM and the physical host – but for the purposes of this discussion, I’m going to consider that the operation of the Operating System is what we’re interested in, rather than the broader system[6].  So, what does our attack surface look like this time?  Here’s a quick list.

  • your network connection
  • the hypervisor
  • services which are listening on the network connection
  • connections via USB – keyboard and mouse, for example.

You’ll notice that “the physical hardware” is missing from this list, and that’s because it’s been replace with “the hypervisor”.  This is a little simplistic, for a few reasons, including that the hypervisor is arguably implemented via a combination of software and hardware controls, but it’s certainly different from the entire physical hardware we were talking about before, and in fact, there’s not much you can do from the point of the Virtual Machine to secure it, other than recognise its restrictions, so we might want to remove it from our list at this level.

The other entries are also somewhat different from our first scenario, although you might not realise at first glance.  First, it’s quite likely (though not certain) that your network connection may in fact be a virtual network connection provided by the hosting system, which means that some of the burden of defending it goes to the hosting system.  The same goes for the connections via USB – the hypervisor generally provides “virtual hardware” (via something like qemu, for example), which can be attached – or removed – from virtual machines.

So, you still have the services which are listening on the network connection, but it’s definitely a different attack surface from the first deployment scenario.

Now, if you take the wider view, then there’s definitely an attack surface at the physical machine level as well, and that needs to be considered – but it’s quite likely that this will be under the control of somebody completely different (such as a Cloud Service Provider – CSP).

Another quick example

When I deploy a webserver (using, for instance, Apache), I’ll need to consider a variety of attack vectors, from authentication to denial of service to storage attacks: these are part of our attack surface.  If I deploy it with a database (e.g. PostgreSQL or MySQL), the attack surface looks different, assuming that I care about the data in the database.  Whereas I might previously have been concerned to ensure that an HTTP “PUT” command didn’t overwrite or scramble a file on my filesystem, a malformed command to my database server could delete or corrupt multiple tables.  On the other hand, I might now be able to lock down some of the functions of my webserver that I no longer need to worry about filesystem attacks.  The attack surface of my webserver is different when it’s combined in a system with other components[7].

Why do I want to reduce my attack surface?

Well, this is quite an easy one.  By looking back at my earlier definition, you’ll see that the smaller a system’s attack surface, the fewer points of attack there are available to malicious actors.  That’s got to be a piece of good news.

You will, of course, never be able to reduce your attack  surface to zero (see There are no absolutes in security), but the more you reduce (and document, always document!), the better position you’ll be in.  It’s always about raising the bar to make it more difficult for malicious actors to affect you.


1 – the mythical IT Security Community, that’s who.

2 – to give one example.

3 – it only talks about data, and only about software: that’s not broad enough for me.

4 – as long-standing[4] readers of this blog will know.

5 – and long-suffering.

6 – yes, I know we can’t ignore that, but we’ll come back to it, honest.

7 – there are considerations around the attack surface of the database as well, of course.

What’s your availability? DoS attacks and more

In security we talk about intentional degradation of availability

A colleague of mine recently asked me about protection from DoS attacks[1] for a project with which he’s involved – Denial of Service attacks.  The first thing that sprung to mind, of course, was DDoS: Distributed Denial of Service attacks, where hundreds or thousands[2] of hosts are used to send vast amounts of network traffic to – or maybe more accurately “at” – servers in the hopes of bringing the servers to their knees and stopping them providing the service for which they’re designed.  These are the attacks that get into the news, and with good reason.

There are other types of DoS however, and the more I thought about it, the more I wondered whether he – and I – should be worrying about these other DoS attacks and also considering other related types of issue which could cause problems to systems.  And because I realised it was an interesting topic, I decided to write about it[3].

I’m going to return to the classic “C.I.A.” model of computer security: Confidentiality, Integrity and Availability.  The attacks we’re talking about here are those most often overlooked: attempts to degrade the availability of a service.  There’s an overlap with the related discipline of resilience here, but I think that the key differentiator is that in security we’re generally talking about intentional degradation of availability, whereas resilience also covers (and maybe focuses on) unintentional degradation.

So, what types of availability attacks might we want to consider?

Denial of service attacks

I think it’s worth linking to Wikipedia’s pretty awesome entry “Denial of service attack” – not something I often do, but I thought it was excellent.  Although they’re not mutually exclusive at all, here are some of the key types as I’d define them:

  • Distributed DoS – where you have lots of different hosts attacking at the same time, flooding the target with traffic.  These days, this can be easily automated, and it’s possible to rent compromised machines to perform a coordinated attack.
  • Application layer – where the attack is aimed at the service, rather than at the host beneath.  This may seem like an academic distinction, but it’s not: what it really means is that the attack is performed with knowledge of the application layer.  So, for instance, if you’re attacking a web server, you might initiate lots of HTTP sessions, or if you were attacking a Kerberos server, you might request lots of authentication tickets.  These types of attacks may be quite costly to perform, but they’re also difficult to protect against, as each attack looks like a “legal” interaction with the service, and unless you’re on the look-out in a way which is typically not automated at this level, they’re difficult to avoid.
  • Host level – this is a family of attacks which go for the host and/or associated Operating System, rather than the service itself.  A classic attack would be the SYN flood, which misused the TCP protocol to use up resources on the host, thereby stopping any associated services from being able to respond.  Host attacks may be somewhat simpler to defend against, as it’s easier to invest in logic to detect them at this level (or maybe “set of layers”, if we adopt the OSI model), and to correlate responses across different hosts.  Firewalls and similar defences are also more likely to be able to be configured to help defend hosts which may be targeted.

Resource starvation

The term “resource starvation” most accurately refers[4] to situations where a process (or application) is denied sufficient CPU allocation to perform correctly.  How could this occur?  Well, it’s going to be rarer than in the DoS case, because in order to do it, you’re going to need some way to impact the underlying scheduling of the Operating System and/or virtualisation management (think hypervisor, typically).  That would normally mean that you’d need pretty low-level access to the machine, but there is a family of attacks known as “noisy neighbour”[5] where workloads – VMs or containers, typically – use up so many resources that other workloads are starved.

However, partly because of this case, I’d argue that resource starvation can usefully be associated with other types of availability attacks which occur locally to the machine hosting the targeted service, which might be related to CPU, file descriptor, network or other resources.

Generally, noisy neighbour attacks can be fairly easily mitigated by controls in the Operating System or virtualisation manager, though, of course, compromised or malicious components at this layer are very difficult to manage.

 

Dependency blocking

I’m not sure what the best term for this type of attack is, but what I’m thinking of is attacks which impact a service by reducing or removing access to external services on which they depend – remote components, if you will.  If, for instance, my web application requires access to a database, then an attack on that database – however performed – will impact my service.  As almost any kind of service will have external dependencies these days[6], this is can be a very effective attack, as it allows knowledgeable attackers to target the weakest link in the “chain” of components that make up your service.

There are mitigations against some of these attacks – caching and later reconciliation/synching being one – but identifying and defending against these sorts of attacks depends largely on considering your service as a system, and realising the types of impact degradation of the different parts might have.

 

Conclusion – managed degradation

Which leads me to a final point, which is that when considering availability attacks, understanding and planning Service degradation: actually a good thing is going to be invaluable – and when you’ve done that, you’ll definitely going to need to test it, too (If it isn’t tested, it doesn’t work).

 


1 – yes, I checked the capitalisation – he wasn’t worried about DRDOS, MS-DOS or any of those lovely 80s era command line Operating Systems.

2 – or millions or more, these days.

3 – here, for the avoidance of doubt.

4 – I believe.

5 – you know my policy on spellings by now.  I’m British, and we’ll keep it that way.

6 – unless you’re still using green-screen standalone machines to run your business, in which case either a) yikes or b) well done.

There are no absolutes in security

There is no “secure”.

Let’s stop using the word “secure”. There is no “secure” in IT.

I know that sounds crazy, but it’s true.

Sometimes, when I speak to colleagues and customers, there will be non-technical or non-security people there, and they ask how to get a secure system. So I explain how I’d make a system secure. It goes a bit like this.

  1. Remove any non-critical USB connections: in particular external or “thumb” drives.
  2. Turn off all bluetooth.
  3. Turn off all wifi.
  4. Remove any network cables.
  5. Remove any other USB connections, including mouse or keyboard.
  6. Disconnect any monitors.
  7. Disconnect any other cables that are connected to the system.
  8. Yes, that includes the power cable.
  9. Now take out any hard drives – SSD, HDD or other.
  10. Destroy them. My preferred method is to gouge tracks in all spinning media, break the heads, bash all pieces with a hammer and then throw them into Mount Doom, but any other volcano[1] will do. Thermite lances are probably acceptable. You should do the same with all other components that you removed in earlier steps.
  11. Destroy the motherboard, including all chips and RAM.
  12. Tip all remaining pieces down a well.
  13. Pour concrete down the well.[2]
  14. You probably now have a secure which is about as secure as you’re going to get.

Yes, it’s a bit extreme, but the point is that all of the components there are possible threat vectors or information leakage channels.

Can we design and operate a system where we manage and mitigate the risks of threats and information leakage? Yes. That’s where we improve the security of a system. Is that a secure system? No, it’s not. What we’ve done is raise the bar, but we’ve not made it absolutely secure.

Part of the problem is that there’s just no way, these days[4], that any single person can be certain of the security of all parts of a system: they are just too many, and too complex. You may understand the application layer, but what about the virtualisation layer, for instance? I presented a simplified layer diagram in my post Isolationism a few months back, in which I listed the host as the bottom layer, but that was, of course, just asking for trouble. Along came Meltdown and Spectre, and now it’s clear (as if we didn’t know it already) that you should never ignore the fact that you can’t even trust the silicon you’re running on to do the thing you think it ought.

None of this, however, stops people and companies telling you that they’ll “secure your perimeter”, or provide you with “secure systems”. And it annoys me[5]. “We’ll help you secure your perimeter” isn’t too bad, but anything that suggests that you can have “secure systems” smacks to me of marketing – bad marketing.

So here you go: please stop using the word “secure” as an unqualified adjective or verb. We’re grown-ups, now, and we know it’s not real. So let’s not pretend.

Now – where was that well-cover? I need to deal with little Tommy.


1 – terrestrial/Middle Earth. I’m not sure about volcano temperatures on other planets or in the Undying Lands across the Western Sea.

2 – it should probably therefore be a disused well. Check there are no animals down there first[3]. In fact, before you throw anything down there.

3 – what’s that, Lassie? Little Tommy’s down the well? Well, I wonder whether little Tommy is waiting for us to throw the components down there so that he can do bad things. Bad Tommy.

4 – I’d like to think that maybe there was, once, in the distant past, but I’m probably kidding myself.

5 – you might be surprised at the number of things that annoy me[6].

6 – unless you’re my wife, in which case you probably won’t be[7].

7 – surprised. Or, in fact, reading this article.

Explained: five misused security words

Untangling responsibility, authority, authorisation, authentication and identification.

I took them out of the title, because otherwise it was going to be huge, with lots of polysyllabic words.  You might, therefore, expect a complicated post – but that’s not my intention*.  What I’d like to do it try to explain these five important concepts in security, as they’re often confused or bound up with one another.  They are, however, separate concepts, and it’s important to be able to disentangle what each means, and how they might be applied in a system.  Today’s words are:

  • responsibility
  • authority
  • authorisation
  • authentication
  • identification.

Let’s start with responsibility.

Responsibility

Confused with: function; authority.

If you’re responsible for something, it means that you need to do it, or if something goes wrong.  You can be responsible for a product launching on time, or for the smooth functioning of a team.  If we’re going to ensure we’re really clear about it, I’d suggest using it only for people.  It’s not usually a formal description of a role in a system, though it’s sometimes used as short-hand for describing what a role does.  This short-hand can be confusing.  “The storage module is responsible for ensuring that writes complete transactionally” or “the crypto here is responsible for encrypting this set of bytes” is just a description of the function of the component, and doesn’t truly denote responsibility.

Also, just because you’re responsible for something doesn’t mean that you can make it happen.  One of the most frequent confusions, then, is with authority.  If you can’t ensure that something happens, but it’s your responsibility to make it happen, you have responsibility without authority***.

Authority

Confused with: responsibility, authorisation.

If you have authority over something, then you can make it happen****.  This is another word which is best restricted to use about people.  As noted above, it is possible to have authority but no responsibility*****.

Once we start talking about systems, phrases like “this component has the authority to kill these processes” really means “has sufficient privilege within the system”, and should best be avoided. What we may need to check, however, is whether a component should be given authorisation to hold a particular level of privilege, or to perform certain tasks.

Authorisation

Confused with: authority; authentication.

If a component has authorisation to perform a certain task or set of tasks, then it has been granted power within the system to do those things.  It can be useful to think of roles and personae in this case.  If you are modelling a system on personae, then you will wish to grant a particular role authorisation to perform tasks that, in real life, the person modelled by that role has the authority to do.  Authorisation is an instantiation or realisation of that authority.  A component is granted the authorisation appropriate to the person it represents.  Not all authorisations can be so easily mapped, however, and may be more granular.  You may have a file manager which has authorisation to change a read-only permission to read-write: something you might struggle to map to a specific role or persona.

If authorisation is the granting of power or capability to a component representing a person, the question that precedes it is “how do I know that I should grant that power or capability to this person or component?”.  That process is authentication – authorisation should be the result of a successful authentication.

Authentication

Confused with: authorisation; identification.

If I’ve checked that you’re allowed to perform and action, then I’ve authenticated you: this process is authentication.  A system, then, before granting authorisation to a person or component, must check that they should be allowed the power or capability that comes with that authorisation – that are appropriate to that role.  Successful authentication leads to authorisation.  Unsuccessful authentication leads to blocking of authorisation******.

With the exception of anonymous roles, the core of an authentication process is checking that the person or component is who he, she or it says they are, or claims to be (although anonymous roles can be appropriate for some capabilities within some systems).  This checking of who or what a person or component is authentication, whereas the identification is the claim and the mapping of an identity to a role.

Identification

Confused with: authentication.

I can identify that a particular person exists without being sure that the specific person in front of me is that person.  They may identify themselves to me – this is identification – and the checking that they are who they profess to be is the authentication step.  In systems, we need to map a known identity to the appropriate capabilities, and the presentation of a component with identity allows us to apply the appropriate checks to instantiate that mapping.

Bringing it all together

Just because you know whom I am doesn’t mean that you’re going to let me do something.  I can identify my children over the telephone*******, but that doesn’t mean that I’m going to authorise them to use my credit card********.  Let’s say, however, that I might give my wife my online video account password over the phone, but not my children.  How might the steps in this play out?

First of all, I have responsibility to ensure that my account isn’t abused.  I also have authority to use it, as granted by the Terms and Conditions of the providing company (I’ve decided not to mention a particular service here, mainly in case I misrepresent their Ts&Cs).

“Hi, darling, it’s me, your darling wife*********. I need the video account password.” Identification – she has told me who she claims to be, and I know that such a person exists.

“Is it really you, and not one of the kids?  You’ve got a cold, and sound a bit odd.”  This is my trying to do authentication.

“Don’t be an idiot, of course it’s me.  Give it to me or I’ll pour your best whisky down the drain.”  It’s her.  Definitely her.

“OK, darling, here’s the password: it’s il0v3myw1fe.”  By giving her the password, I’ve  performed authorisation.

It’s important to understand these different concepts, as they’re often conflated or confused, but if you can’t separate them, it’s difficult not only to design systems to function correctly, but also to log and audit the different processes as they occur.


*we’ll have to see how well I manage, however.  I know that I’m prone to long-windedness**

**ask my wife.  Or don’t.

***and a significant problem.

****in a perfect world.  Sometimes people don’t do what they ought to.

*****this is much, much nicer than responsibility without authority.

******and logging.  In both cases.  Lots of logging.  And possibly flashing lights, security guards and sirens on failure, if you’re into that sort of thing.

*******most of the time: sometimes they sound like my wife.  This is confusing.

********neither should you assume that I’m going to let my wife use it, either.*********

*********not to suggest that she can’t use a credit card: it’s just that we have separate ones, mainly for logging purposes.

**********we don’t usually talk like this on the phone.

Isolationism

… what’s the fun in having an Internet if you can’t, well, “net” on it?

Sometimes – and I hope this doesn’t come as too much of a surprise to my readers – sometimes, there are bad people, and they do bad things with computers.  These bad things are often about stopping the good things that computers are supposed to be doing* from happening properly.  This is generally considered not to be what you want to happen**.

For this reason, when we architect and design systems, we often try to enforce isolation between components.  I’ve had a couple of very interesting discussions over the past week about how to isolate various processes from each other, using different types of isolation, so I thought it might be interesting to go through some of the different types of isolation that we see out there.  For the record, I’m not an expert on all different types of system, so I’m going to talk some history****, and then I’m going to concentrate on Linux*****, because that’s what I know best.

In the beginning

In the beginning, computers didn’t talk to one another.  It was relatively difficult, therefore, for the bad people to do their bad things unless they physically had access to the computers themselves, and even if they did the bad things, the repercussions weren’t very widespread because there was no easy way for them to spread to other computers.  This was good.

Much of the conversation below will focus on how individual computers act as hosts for a variety of different processes, so I’m going to refer to individual computers as “hosts” for the purposes of this post.  Isolation at this level – host isolation – is still arguably the strongest type available to us.  We typically talk about “air-gapping”, where there is literally an air gap – no physical network connection – between one host and another, but we also mean no wireless connection either.  You might think that this is irrelevant in the modern networking world, but there are classes of usage where it is still very useful, the most obvious being for Certificate Authorities, where the root certificate is so rarely accessed – and so sensitive – that there is good reason not to connect the host on which it is stored to be connected to any other computer, and to use other means, such as smart-cards, a printer, or good old pen and paper to transfer information from it.

And then…

And then came networks.  These allow hosts to talk to each other.  In fact, by dint of the Internet, pretty much any host can talk to any other host, given a gateway or two.  So along came network isolation to try to stop tha.  Network isolation is basically trying to re-apply host isolation, after people messed it up by allowing hosts to talk to each other******.

Later, some smart alec came up with the idea of allowing multiple processes to be on the same host at the same time.  The OS and kernel were trusted to keep these separate, but sometimes that wasn’t enough, so then virtualisation came along, to try to convince these different processes that they weren’t actually executing alongside anything else, but had their own environment to do their old thing.  Sadly, the bad processes realised this wasn’t always true and found ways to get around this, so hardware virtualisation came along, where the actual chips running the hosts were recruited to try to convince the bad processes that they were all alone in the world.  This should work, only a) people don’t always program the chips – or the software running on them – properly, and b) people decided that despite wanting to let these processes run as if they were on separate hosts, they also wanted them to be able to talk to processes which really were on other hosts.  This meant that networking isolation needed to be applied not just at the host level, but at the virtual host level, as well******.

A step backwards?

Now, in a move which may seem retrograde, it occurred to some people that although hardware virtualisation seemed like a great plan, it was also somewhat of a pain to administer, and introduced inefficiencies that they didn’t like: e.g. using up lots of RAM and lots of compute cycles.  These were often the same people who were of the opinion that processes ought to be able to talk to each other – what’s the fun in having an Internet if you can’t, well, “net” on it?  Now we, as security folks, realise how foolish this sounds – allowing processes to talk to each other just encourages the bad people, right? – but they won the day, and containers came along. Containers allow lots of processes to be run on a host in a lightweight way, and rely on kernel controls – mainly namespaces – to ensure isolation********.  In fact, there’s more you can do: you can use techniques like system call trapping to intercept the things that processes are attempting and stop them if they look like the sort of things they shouldn’t be attempting*********.

And, of course, you can write frameworks at the application layer to try to control what the different components of an application system can do – that’s basically the highest layer, and you’re just layering applications on applications at this point.

Systems thinking

So here’s where I get to the chance to mention one of my favourite topics: systems.  As I’ve said before, by “system” here I don’t mean an individual computer (hence my definition of host, above), but a set of components that work together.  The thing about isolation is that it works best when applied to a system.

Let me explain.  A system, at least as I’d define it for the purposes of this post, is a set of components that work together but don’t have knowledge of external pieces.  Most important, they don’t have knowledge of different layers below them.  Systems may impose isolation on applications at higher layers, because they provide abstractions which allow higher systems to be able to ignore them, but by virtue of that, systems aren’t – or shouldn’t be – aware of the layers below them.

A simple description of the layers – and it doesn’t always hold, partly because networks are tricky things, and partly because there are various ways to assemble the stack – may look like this.

Application (top layer)
Container
System trapping
Kernel
Hardware virtualisation
Networking
Host (bottom layer)

As I intimated above, this is a (gross) simplification, but the point holds that the basic rule is that you can enforce isolation upwards in the layers of the stack, but you can’t enforce it downwards.  Lower layer isolation is therefore generally stronger than higher layer isolation.   This shouldn’t come as a huge surprise to anyone who’s used to considering network stacks – the principle is the same – but it’s helpful to lay out and explain the principles from time to time, and the implications for when you’re designing and architecting.

Because if you are considering trust models and are defining trust domains, you need to be very, very careful about defining whether – and how – these domains spread across the layer boundaries.  If you miss a boundary out when considering trust domains, you’ve almost certainly messed up, and need to start again.  Trust domains are important in this sort of conversation because the boundaries between trust domains are typically where you want to be able to enforce and police isolation.

The conversations I’ve had recently basically ran into problems because what people really wanted to do was apply lower layer isolation from layers above which had no knowledge of the bottom layers, and no way to reach into the control plane for those layers.  We had to remodel, and I think that we came up with some sensible approaches.  It was as I was discussing these approaches that it occurred to me that it would have been a whole lot easier to discuss them if we’d started out with a discussion of layers: hence this blog post.  I hope it’s useful.

 


*although they may well not be, because, as I’m pretty sure I’ve mentioned before on this blog, the people trying to make the computers do the good things quite often get it wrong.

**unless you’re one of the bad people. But I’m pretty sure they don’t read this blog, so we’re OK***.

***if you are a bad person, and you read this blog,  would you please mind pretending, just for now, that you’re a good person?  Thank you.  It’ll help us all sleep much better in our beds.

****which I’m absolutely going to present in an order that suits me, and generally neglect to check properly.  Tough.

*****s/Linux/GNU Linux/g; Natch.

******for some reason, this seemed like a good idea at the time.

*******for those of you who are paying attention, we’ve got to techniques like VXLAN and SR-IOV.

********kernel purists will try to convince you that there’s no mention of containers in the Linux kernel, and that they “don’t really exist” as a concept.  Try downloading the kernel source and doing a search for “container” if you want some ammunition to counter such arguments.

*********this is how SELinux works, for instance.

Thinking like a (systems) architect

“…I know it when I see it, and the motion picture involved in this case is not that.” – Mr Justice Stewart.

My very first post on this blog, some six months ago*, was entitled “Systems security – why it matters“, and it turns out that posts where I talk** about architecture are popular, so I thought I’d go a bit further into what I think being an architect is about.  First of all, I’d like to reference two books which helped me come to some sort of understanding about the art of being an architect.  I read them a long time ago****, but I still dip into them from time to time.  I’m going to link to the publisher’s***** website, rather than to any particular bookseller:

What’s interesting about them is that they both have multiple points of view expressed in them: some contradictory – even within each book.  And this rather reflects the fact that I believe that being a systems architect is an art, or a discipline.  Different practitioners will have different views about it.  You can talk about Computer Science being a hard science, and there are parts of it which are, but much of software engineering (lower case intentional) goes beyond that.  The same, I think, is even more true for systems architecture: you may be able to grok what it is once you know it, but it’s very difficult to point to something – even a set of principles – and say, “that is systems architecture”.  Sometimes, the easiest way to define something is by defining what it’s not: search for “I know it when I see it, and the motion picture involved in this case is not that.”******

Let me, however, try to give some examples of the sort of things you should expect to see when someone (or a group of people) is doing good systems architecture:

  • pictures: if you can’t show the different components of a system in a picture, I don’t believe that you can fully describe what each does, or how they interact.  If you can’t separate them out, you don’t have a properly described system, so you have no architecture.  I know that I’m heavily visually oriented, but for me this feels like a sine qua non********.
  • a data description: if you don’t know what data is in your system, you don’t know what it does.
  • an entity description: components, users, printers, whatever: you need to know what’s doing what so that you can describe what the what is that’s being done to it, and what for*********.
  • an awareness of time: this may sound like a weird one, but all systems (of any use) process data through time.  If you don’t think about what will change, you won’t understand what will do the changing, and you won’t be able to consider what might go wrong if things get changed in ways you don’t expect, or by components that shouldn’t be doing the changing in the first place.
  • some thinking on failure modes: I’ve said it before, and I’ll say it again: “things will go wrong.”  You can’t be expected to imagine all the things that might go wrong, but you have a responsibility to consider what might happen to different components and data – and therefore to the operation of the system of the whole – if********** they fall over.

There are, of course, some very useful tools and methodologies (the use of UML views is a great example) which can help you with all of these.  But you don’t need to be an expert in all of them – or even any one of them – to be a good systems architect.

One last thing I’d add, though, and I’m going to call it the “bus and amnesiac dictum”***********:

  • In six months’ time, you’ll have forgotten the details or been hit by a bus: document it.  All of it.

You know it makes sense.


*this note is for nothing other than to catch those people who go straight to this section, hoping for a summary of the main article.  You know who you are, and you’re busted.

**well, write, I guess, but it feels like I’m chatting at people, so that’s how I think of it***

***yes, I’m going out of my way to make the notes even less info-filled than usual.  Deal with it.

****seven years is a long time, right?

*****almost “of course”, though I believe they’re getting out of the paper book publishing biz, sadly.

******this is a famous comment from a case called from the U.S. called “Jacobellis v. Ohio” which I’m absolutely not going to quote in full here, because although it might generate quite a lot of traffic, it’s not the sort of traffic I want on this blog*******.

*******I did some searching found the word: it’s apophasis.  I love that word.  Discovered it during some study once, forgot it.  Glad to have re-found it.

********I know: Greek and Latin in one post.  Sehr gut, ja?

********.*I realise that this is a complete mess of a sentence.  But it does have a charm to it, yes?  And you know what it means, you really do.

**********when.  I meant “when”.

***********more Latin.

Why I love technical debt

… if technical debt can be named, then it can be documented.

Not necessarily a title you’d expect for a blog post, I guess*, but I’m a fan of technical debt.  There are two reasons for this: a Bad Reason[tm] and a Good Reason[tm].  I’ll be up front about the Bad Reason first, and then explain why even that isn’t really a reason to love it.  I’ll then tackle the Good Reason, and you’ll nod along in agreement.

The Bad Reason I love technical debt

We’ll get this out of the way, then, shall we?  The Bad Reason is that, well, there’s just lots of it, it’s interesting, it keeps me in a job, and it always provides a reason, as a security architect, for me to get involved in** projects that might give me something new to look at.  I suppose those aren’t all bad things, and it can also be a bit depressing, because there’s always so much of it, it’s not always interesting, and sometimes I need to get involved even when I might have better things to do.

And what’s worse is that it almost always seems to be security-related, and it’s always there.  That’s the bad part.

Security, we all know, is the piece that so often gets left out, or tacked on at the end, or done in half the time that it deserves, or done by people who have half an idea, but don’t quite fully grasp it.  I should be clear at this point: I’m not saying that this last reason is those people’s fault.  That people know they need security it fantastic.  If we (the security folks) or we (the organisation) haven’t done a good enough job in making security resources – whether people, training or sufficient visibility – available to those people who need it, then the fact that they’re trying is a great, and something we can work on.  Let’s call that a positive.  Or at least a reason for hope***.

The Good Reason I love technical debt

So let’s get on to the other reason: the legitimate reason.  I love technical debt when it’s named.

What does that mean?

So, we all get that technical debt is a bad thing.  It’s what happens when you make decisions for pragmatic reasons which are likely to come back and bite you later in a project’s lifecycle.  Here are a few classic examples that relate to security:

  • not getting round to applying authentication or authorisation controls on APIs which might at some point be public;
  • lumping capabilities together so that it’s difficult to separate out appropriate roles later on;
  • hard-coding roles in ways which don’t allow for customisation by people who may use your application in different ways to those that you initially considered;
  • hard-coding cipher suites for cryptographic protocols, rather than putting them in a config file where they can be changed or selected later.

There are lots more, of course, but those are just a few which jump out at me, and which I’ve seen over the years.  Technical debt means making decisions which will mean more work later on to fix them.  And that can’t be good, can it?

Well, there are two words in the preceding paragraph or two which should make us happy: they are “decisions” and “pragmatic”.  Because in order for something to be named technical debt, I’d argue, it needs to have been subject to conscious decision-making, and for trade-offs to have been made – hopefully for rational reasons.  Those reasons may be many and various – lack of qualified resources; project deadlines; lack of sufficient requirement definition – but if they’ve been made consciously, then the technical debt can be named, and if technical debt can be named, then it can be documented.

And if they’re documented, then we’re half-way there.  As a security guy, I know that I can’t force everything that goes out of the door to meet all the requirements I’d like – but the same goes for the High Availability gal, the UX team, the performance folks, et al..  What we need – what we all need – is for there to exist documentation about why decisions were made, because then, when we return to the problem later on, we’ll know that it was thought about.  And, what’s more, the recording of that information might even make it into product documentation, too.  “This API is designed to be used in a protected environment, and should not be exposed on the public Internet” is a great piece of documentation.  It may not be what a customer is looking for, but at least they know how to deploy the product now, and, crucially, it’s an opportunity for them to come back to the product manager and say, “we’d really like to deploy that particular API in this way: could you please add this as a feature request?”.  Product managers like that.  Very much****.

The best thing, though, is not just that named technical debt is visible technical debt, but that if you encourage your developers to document the decisions in code*****, then there’s a half-way to decent chance that they’ll record some ideas about how this should be done in the future.  If you’re really lucky, they might even add some hooks in the code to make it easier (an “auth” parameter on the API which is unused in the current version, but will make API compatibility so much simpler in new releases; or cipher entry in the config file which only accepts one option now, but is at least checked by the code).

I’ve been a bit disingenuous, I know, by defining technical debt as named technical debt.  But honestly, if it’s not named, then you can’t know what it is, and until you know what it is, you can’t fix it*******.  My advice is this: when you’re doing a release close-down (or in your weekly stand-up: EVERY weekly stand-up), have an item to record technical debt.  Name it, document it, be proud, sleep at night.

 


*well, apart from the obvious clickbait reason – for which I’m (a little) sorry.

**I nearly wrote “poke my nose into”.

***work with me here.

****if you’re software engineer/coder/hacker – here’s a piece of advice: learn to talk to product managers like real people, and treat them nicely.  They (the better ones, at least) are invaluable allies when you need to prioritise features or have tricky trade-offs to make.

*****do this.  Just do it.  Documentation which isn’t at least mirrored in code isn’t real documentation******.

******don’t believe me?  Talk to developers.  “Who reads product documentation?”  “Oh, the spec?  I skimmed it.  A few releases back.  I think.”  “I looked in the header file: couldn’t see it there.”

*******or decide not to fix it, which may also be an entirely appropriate decision.