6 types of attack: learning from Supermicro, State Actors and silicon

… it could have happened, and it could be happening now.

Last week, Bloomberg published a story detailing how Chinese state actors had allegedly forced employees of Supermicro (or companies subcontracting to them) to insert a small chip – the silicon in the title – into motherboards destined for Apple and Amazon.  The article talked about how an investigation into these boards had uncovered this chip and the steps that Apple, Amazon and others had taken.  The story was vigorously denied by Supermicro, Apple and Amazon, but that didn’t stop Supermicro’s stock price from tumbling by over 50%.

I have heard strong views expressed by people with expertise in the topic on both sides of the argument: that it probably didn’t happen, and that it probably did.  One side argues that the denials by Apple and Amazon, for instance, might have been impacted by legal “gagging orders” from the US government.  An opposing argument suggests that the Bloomberg reporters might have confused this story with a similar one that occurred a few months ago.  Whether this particular story is correct in every detail, or a fabrication – intentional or unintentional – is not what I’m interested in at this point.  What I’m interested in is not whether it did happen in this instance: the clear message is that it could have happened, and it could be happening now.

I’ve written before about State Actors, and whether you should worry about them.  There’s another question which this story brings up, which is possibly even more germane: what can you do about it if you are worried about them?  This breaks down further into two questions:

  • how can I tell if my systems have been compromised?
  • what can I do if I discover that they have?

The first of these is easily enough to keep us occupied for now [1], so let’s spend some time on that.  First, let’s first define six types of compromise, think about how they might be carried out, and then consider the questions above for each:

  • supply-chain hardware compromise;
  • supply-chain firmware compromise;
  • supply-chain software compromise;
  • post-provisioning hardware compromise;
  • post-provisioning firmware compromise;
  • post-provisioning software compromise.

This article doesn’t provide sufficient space to go into detail of these types of attack, and provides an overview of each, instead[2].

Terms

  • Supply-chain – all of the steps up to when you start actually running a system.  From manufacture through installation, including vendors of all hardware components and all software, OEMs, integrators and even shipping firms that have physical access to any pieces of the system.  For all supply-chain compromises, the key question is the extent to which you, the owner of a system, can trust every single member of the supply chain[3].
  • Post-provisioning – any point after which you have installed the hardware, put all of the software you want on it, and started running it: the time during which you might consider the system “under your control”.
  • Hardware – the physical components of a system.
  • Software – software that you have installed on the system and over which you have some control: typically the Operating System and application software.  The amount of control depends on factors such as whether you use proprietary or open source software, and how much of it is produced, compiled or checked by you.
  • Firmware – special software that controls how the hardware interacts with the standard software on the machine, the hardware that comprises the system, and external systems.  It is typically provided by hardware vendors and its operation opaque to owners and operators of the system.

Compromise types

See the table at the bottom of this article for a short summary of the points below.

  1. Supply-chain hardware – there are multiple opportunities in the supply chain to compromise hardware, but the more hard they are made to detect, the more difficult they are to perform.  The attack described in the Bloomberg story would be extremely difficult to detect, but the addition of a keyboard logger to a keyboard just before delivery (for instance) would be correspondingly more simple.
  2. Supply-chain firmware – of all the options, this has the best return on investment for an attacker.  Assuming good access to an appropriate part of the supply chain, inserting firmware that (for instance) impacts network performance or leaks data over a wifi connection is relatively simple.  The difficulty in detection comes from the fact that although it is possible for the owner of the system to check that the firmware is what they think it is, what that measurement confirms is only that the vendor has told them what they have supplied.  So the “medium” rating relates only to firmware that was implanted by members in the supply chain who did not source the original firmware: otherwise, it’s “high”.
  3. Supply-chain software – by this, I mean software that comes installed on a system when it is delivered.  Some organisations will insist in “clean” systems being delivered to them[4], and will install everything from the Operating System upwards themselves.  This means that they basically now have to trust their Operating System vendor[5], which is maybe better than trusting other members of the supply chain to have installed the software correctly.  I’d say that it’s not too simple to mess with this in the supply chain, if only because checking isn’t too hard for the legitimate members of the chain.
  4. Post-provisioning hardware – this is where somebody with physical access to your hardware – after it’s been set up and is running – inserts or attaches hardware to it.  I nearly gave this a “high” rating for difficulty below, assuming that we’re talking about servers, rather than laptops or desktop systems, as one would hope that your servers are well-protected, but the ease with which attackers have shown that they can typically get physical access to systems using techniques like social engineering, means that I’ve downgraded this to “medium”.  Detection, on the other hand, should be fairly simple given sufficient resources (hence the “medium” rating), and although I don’t believe anybody who says that a system is “tamper-proof”, tamper-evidence is a much simpler property to achieve.
  5. Post-provisioning firmware – when you patch your Operating System, it will often also patch firmware on the rest of your system.  This is generally a good thing to do, as patches may provide security, resilience or performance improvements, but you’re stuck with the same problem as with supply-chain firmware that you need to trust the vendor: in fact, you need to trust both your Operating System vendor and their relationship with the firmware vendor.
  6. Post-provisioning software – is it easy to compromise systems via their Operating System and/or application software?  Yes: this we know.  Luckily – though depending on the sophistication of the attack – there are generally good tools and mechanisms for detecting such compromises, including behavioural monitoring.

Table

 

Compromise type Attacker difficulty Detection difficulty
Supply-chain hardware High High
Supply-chain firmware Low Medium
Supply-chain software Medium Medium
Post-provisioning hardware Medium Medium
Post-provisioning firmware Medium Medium
Post-provisioning software Low Low

Conclusion

What are your chances of spotting a compromise on your system?  I would argue that they are generally pretty much in line with the difficulty of performing the attack in the first place: with the glaring exception of supply-chain firmware.  We’ve seen attacks of this type, and they’re very difficult to detect.  The good news is that there is some good work going on to help detection of these types of attacks, particularly in the world of Linux[6] and open source.  In the meantime, I would argue our best forms of defence are currently:

  • for supply-chain: build close relationships, use known and trusted suppliers.  You may want to restrict as much as possible of your supply chain to “friendly” regimes if you’re worried about State Actor attacks, but this is very hard in the global economy.
  • for post-provisioning: lock down your systems as much as possible – both physically and logically – and use behavioural monitoring to try to detect anomalies in what you expect them to be doing.

1 – I’ll try to write something on this other topic in a different article.

2 – depending on interest, I’ll also consider a series of articles to go into more detail on each.

3 – how certain are you, for instance, that your delivery company won’t give your own government’s security services access to the boxes containing your equipment before they deliver them to you?

4 – though see above: what about the firmware?

5 – though you can always compile your own Operating System if you use open source software[6].

6 – oh, you didn’t compile your compiler yourself?  All bets off, then…

7 – yes, “GNU Linux”.

3 laptop power mode options

Don’t suspend your laptop.

I wrote a post a couple of weeks ago called 7 security tips for travelling with your laptop.  The seventh tip was “Don’t suspend”: in other words, when you’re finished doing what you’re doing, either turn your laptop off, or put it into “hibernate” mode.  I thought it might be worth revisiting this piece of advice, partly to explain the difference between these different states, and partly to explain exactly why it’s a bad idea to use the suspend mode.  A very bad idea indeed.  In fact, I’d almost go as far as saying “don’t suspend your laptop”.

So, what are the three power modes usually available to us on a laptop?  Let’s look at them one at a time.  I’m going to assume that you have disk encryption enabled (the second of the seven tips in my earlier article), because you really, really should.

Power down

This is what you think it is: your laptop has powered down, and in order to start it up again, you’ve got to go through an entire boot process.  Any applications that you had running before will need to be restarted[1], and won’t come back in the same state that they were before[2].  If somebody has access to your laptop when you’re not there, then there’s not immediate way that they can get at your data, as it’s encrypted[3].  See the conclusion for a couple of provisos, but powering down your laptop when you’re not using it is pretty safe, and the time taken to reboot a modern laptop with a decent operating system on it is usually pretty quick these days.

It’s worth noting that for some operating systems – Microsoft Windows, at least – when you tell your laptop to power down, it doesn’t.  It actually performs a hibernate without telling you, in order to speed up the boot process.  There are (I believe – as a proud open source user, I don’t run Windows, so I couldn’t say for sure) ways around this, but most of the time you probably don’t care: see below on why hibernate mode is pretty good for many requirements and use cases.

Hibernate

Confusingly, hibernate is sometimes referred to as “suspend to disk”.  What actually happens when you hibernate your machine is that the contents of RAM (your working memory) are copied and saved to your hard disk.  The machine is then powered down, leaving the state of the machine ready to be reloaded when you reboot.  When you do this, the laptop notices that it was hibernated, looks for saved state, and loads it into RAM[4].  Your session should come back pretty much as it was before – though if you’ve moved to a different wifi network or a session on a website has expired, for instance, your machine may have to do some clever bits and pieces in the background to make things as nice as possible as you resume working.

The key thing about hibernating your laptop is that while you’ve saved state to the hard drive, it’s encrypted[3], so anyone who manages to get at your laptop while you’re not there will have a hard time getting any data from it.  You’ll need to unlock your hard drive before your session can be resumed, and given that your attacker won’t have your password, you’re good to go.

Suspend

The key difference between suspend and the other two power modes we’ve examined above is that when you choose to suspend your laptop, it’s still powered on.  The various components are put into low-power mode, and it should wake up pretty quickly when you need it, but, crucially, all of the applications that you were running beforehand are still running, and are still in RAM.  I mentioned in my previous post that this increases the attack surface significantly, but there are some protections in place to improve the security of your laptop when it’s in suspend mode.  Unluckily, they’re not always successful, as was demonstrated a few days ago by an attack described by the Register.  Even if your laptop is not at risk from this particular attack, my advice just not to use suspend.

There are two usages of suspend that are difficult to manage.  The first is when you have your machine set to suspend after a long period of inactivity.  Typically, you’ll set the screen to lock after a certain period of time, and then the system will suspend.  Normally, this is only set for when you’re on battery – in other words, when you’re not sat at your desk with the power plugged in.  My advice would be to change this setting so that your laptop goes to hibernate instead.  It’s a bit more time to boot it up, but if you’re leaving your laptop unused for a while, and it’s not plugged in, then it’s most likely that you’re travelling, and you need to be careful.

The second is when you get up and close the lid to move elsewhere.  If you’re moving around within your office or home, then that’s probably OK, but for anything else, try training yourself to hibernate or power down your laptop instead.

Conclusion

There are two important provisos here.

The first I’ve already mentioned: if you don’t have disk encryption turned on, then someone with access to your laptop, even for a fairly short while, is likely to have quite an easy time getting at your data.  It’s worth pointing out that you want full disk encryption turned on, and not just “home directory” encryption.  That’s because if someone has access to your laptop for a while, they may well be able to make changes to the boot-up mechanism in such a way that they can wait until you log in and either collect your password for later use or have the data sent to them over the network.  This is much less easy with full disk encryption.

The second is that there are definitely techniques available to use hardware and firmware attacks on your machine that may be successful even with full disk encryption.  Some of these are easy to spot – don’t turn on your machine if there’s anything in the USB port that you don’t recognise[5] – but others, where hardware may be attached or even soldered to the motherboard, or firmware changed, are very difficult to spot.  We’re getting into some fairly sophisticated attacks here, and if you’re worried about them, then consider my first security tip “Don’t take a laptop”.


1 – some of them automatically, either as system processes (you rarely have to remember to have to turn networking back on, for instance), or as “start-up” applications which most operating systems will allow you to specify as auto-starting when you log in.

2 – this isn’t actually quite true for all applications: it might have been more accurate to say “unless they’re set up this way”.  Some applications (web browsers are typical examples) will notice if they weren’t shut down “nicely”, and will attempt to get back into the state they were beforehand.

3 – you did enable disk encryption, right?

4 – assuming it’s there, and hasn’t been corrupted in some way, in which case the laptop will just run a normal boot sequence.

5 – and don’t just use random USB sticks from strangers or that you pick up in the carpark, but you knew that, right?

7 security tips for travelling with your laptop

Our laptop is a key tool that we tend to keep with us.

I do quite a lot of travel, and although I had a quiet month or two over the summer, I’ve got several trips booked over the next few months.  For many of us, our laptop is a key tool that we tend to keep with us, and most of us will have sensitive material of some type on our laptops, whether it’s internal emails, customer, partner or competitive information, patent information, details of internal processes, strategic documents or keys and tools for accessing our internal network.  I decided to provide a few tips around security and your laptop[1]. Of course, a laptop presents lots of opportunities for attackers – of various types.  Before we go any further, let’s think about some of the types of attacker you might be worrying about.  The extent to which you need to be paranoid will depend somewhat on what attackers you’re most concerned about.

Attackers

Here are some types of attackers that spring to my mind: bear in mind that there may be overlap, and that different individuals may take on different roles in different situations.

  • opportunistic thieves – people who will just steal your hardware.
  • opportunistic viewers – people who will have a good look at information on your screen.
  • opportunistic probers – people who will try to get information from your laptop if they get access to it.
  • customers, partners, competitors – it can be interesting and useful for any of these types to gain information from your laptop.  The steps they are willing to take to get that information may vary based on a variety of factors.
  • hackers/crackers – whether opportunistic or targeted, you need to be aware of where you – and your laptop – are most vulnerable.
  • state actors – these are people with lots and lots of resources, for whom access to your laptop, even for a short amount of time, gives them lots of chances to do short-term and long-term damage to you data and organisation.

 

7 concrete suggestions

  1. Don’t take a laptop.  Do you really need one with you?  There may be occasions when it’s safer not to travel with a laptop: leave it in the office, at home, in your bag or in your hotel room.  There are risks associated even with your hotel room (see below), but maybe a bluetooth keyboard with your phone, a USB stick or an emailed presentation will be all you need.  Not to suggest that any of those are necessarily safe, but you are at least reducing your attack surface.  Oh, and if you do travel with your laptop, make sure you keep it with you, or at least secured at all times.
  2. Ensure that you have disk encryption enabled.  If you have disk encryption, then if somebody steals your laptop, it’s very difficult for them to get at your data.  If you don’t, it’s really, really easy.  Turn on disk encryption: just do.
  3. Think about your screen. When your screen is on, people can see it.  Many laptop screens have a very broad viewing angle, so people to either side of you can easily see what’s on it.  The availability of high resolution cameras on mobile phones means that people don’t need long to capture what’s on your screen, so this is a key issue to consider.  What are your options?  The most common is to use a privacy screen, which fits over your laptop screen, typically reducing the angle from which it can be viewed.  These don’t stop people being able to view what’s on it, but it does mean that viewers need to be almost directly behind you.  This may sound like a good thing, but in fact, that’s the place you’re least likely to notice a surreptitious viewer, so employ caution.  I worry that these screens can give you a false sense of security, so I don’t use one.  Instead, I make a conscious decision never to have anything sensitive on my screen in situations where non-trusted people might see it.   If I really need to do some work, I’ll find a private place where nobody can look at my screen – and even try to be aware of the possibility of reflections in windows.
  4. Lock your screen.  Even if you’re stepping away for just a few seconds, always, always lock your screen.  Even if it’s just colleagues around.  Colleagues sometimes find it “funny” to mess with your laptop, or send emails from your account.  What’s more, there can be a certain kudos to having messaged with “the security guy/gal’s” laptop.  Locking the screen is always a good habit to get into, and rather than thinking “oh, I’ll only be 20 seconds”: think how often you get called over to chat to someone, or decide that you want a cup of tea/coffee, or just forget what you were doing, and just wander off.
  5. Put your laptop into airplane mode.  There are a multitude of attacks which can piggy-back on the wifi and bluetooth capabilities of your laptop (and your phone).  If you don’t need them, then turn them off.  In fact, turn off bluetooth anyway: there’s rarely a reason to leave it on.  There may be times to turn on wifi, but be careful about the networks you connect to: there are lots of attacks which pretend to be well-known wifi APs such as “Starbucks” which will let your laptop connect and then attempt to do Bad Things to it.  One alternative – if you have sufficient data on your mobile phone plan and you trust the provider you’re using – is to set your mobile (cell) phone up as a mobile access point and to connect to that instead.
  6. Don’t forget to take upgrades.  Just because you’re on the road, don’t forget to take software upgrades.  Obviously, you can’t do that with wifi off – unless you have Ethernet access – but when you are out on the road, you’re often more vulnerable than when you’re sitting behind the corporate firewall, so keeping your software patched and updated is a sensible precaution.
  7. Don’t suspend.  Yes, the suspend mode[2] makes it easy to get back to what you were doing, and doesn’t take much battery, but leaving your laptop in suspend increases the attack surface available to somebody who steals your laptop, or just has access to it for a short while (the classic “evil maid” attack of someone who has access to your hotel room, for instance).  If you turn off your laptop, and you’ve turned on disk encryption (see above), then you’re in much better shape.

Are there more things you can do?  Yes, of course.  But all of the above are simple ways to reduce the chance that you or your laptop are at risk from


1 – After a recent blog post, a colleague emailed me with a criticism.  It was well-intentioned, and I took it as such.  The comment he made was that although he enjoys my articles, he would prefer it if there were more suggestions on how to act, or things to do.  I had a think about it, and decided that this was entirely apt, so this week, I’m going to provide some thoughts and some suggestions this week.  I can’t promise to be consistent in meeting this aim, but this is at least a start.

2 – edited: I did have “hibernate” mode in here as well, but a colleague pointed out that hibernate should force disk encryption, so should be safer than suspend.  I never use either, as booting from cold is usually so quick these days.

Who do you trust: your data, or your enemy’s?

Our security logs define our organisational memory.

Imagine, just imagine, that you’re head of an organisation, and you suspect that there’s been some sort of attack on your systems[1].  You don’t know for sure, but a bunch of your cleverest folks are pretty sure that there are sufficient signs to merit an investigation.  So, you agree to allow that investigation, and it’s pretty clear from the outset – and becomes yet more clear as the investigation unfolds – that there was an attack on your organisation.  And as this investigation draws close to its completion, you happen to meet the head of another organisation, which happens to be not only your competitor, but also the party that your investigators are certain was behind the attack.  That person – the leader of your competitor – tells you that they absolutely didn’t perform an attack: no, sirree.  Who do you believe?  Your people, who have been laboring[2] away for months, or your competitor?

What a ridiculous question: of course you’d believe your own people over your competitor, right?

So, having set up such an absurd scenario[4], let’s look at a scenario which is actually much more likely.  Your systems have been acting strangely, and there seems to be something going on.  Based on the available information, you believe that you’ve been attacked, but you’re not sure.  Your experts think it’s pretty likely, so you approve an investigation.  And then one of your investigatory team come to you to tell you some really bad news about the data.  “What’s the problem?” you ask.  “Is there no data?”

“No,” they reply, “it’s worse than that.  We’ve got loads of data, but we don’t know which is real.”

Our logs are our memory

There is a literary trope – one of my favourite examples is Margery Allingham’s The Traitor’s Purse – where a character realises that he or she is somebody other than who they think they are when they start to question their memories.  We are defined by our memories, and the same goes for organisational security.  Our security logs define our organisational memory.  If you cannot prove that the data you are looking at is[5] correct, then you cannot be sure what led to the state you are in now.

Let’s give a quick example.  In my organisation, I am careful to log every time I upgrade a piece of software, but I begin to wonder whether a particular application is behaving as expected.  Maybe I see some traffic to an external IP address which I’ve never seen before, for instance.  Well, the first thing I’m going to do is to check the logs to see whether somebody has updated the software with a malicious version.  Assuming that somebody has installed a malicious version, there are three likely outcomes at this point:

  1. you check the logs, and it’s clear that a non-authorised version was installed.  This isn’t good, because you now know that somebody has unauthorised access to your system, but at least you can do something about it.
  2. at least some of the logs are missing.  This is less good, because you really can’t be sure what’s gone on, but you know have a pretty strong suspicion that somebody with unauthorised access has deleted some logs to cover up their tracks, which means that you have a starting point for remediation.
  3. there’s nothing wrong.  All the logs look fine.  You’re now really concerned, as you can’t be sure of your own data – your organisation’s memories.  You may be looking at correct data, or you may be looking at incorrect data: data which has been written by your enemy.  Attackers can – and do – go into log files and change the data in them to obscure the fact that they have performed particular actions.  It’s actually one of the first steps that a competent attacker will perform.

In the scenario as defined, things probably aren’t too bad: you can check the checksum or hash of the installed software, and check that it’s the version you expect.  But what if the attacker has also changed the version of your checksum- or hash-checker so that, for packages associated with this particular application, they always return what you expect to see?  This is not a theoretical attack, and nor is it the only way approach that attackers have to try to muddy the waters as to what they’ve done. And if it has happened, they you have no way of confirming that you have the correct version of the application.  You can try updating the checksum- or hash-checker, but what if the attacker has meddled with the software installer to ensure that it always installs their version…?

It’s a slippery slope, and bar wiping the entire system and reinstalling[6], there’s little you can do to be certain that you’ve cleared things up properly.  And in some cases, it may be too late: what if the attacker’s main aim was to exfiltrate some of your proprietary data, for example?

Lessons to learn, actions to take

Well, the key lesson is that your logs are important, and they need to be protected.  If you can’t trust your logs, then it can be very, very difficult not only to identify the extent of an attack, but also to remediate it or, in the worst case, even to know that you’ve been attacked at all.

And what can you do?  Well, there are many techniques that you can employ, and the best combination will depend on a number of questions, including your regulatory regime, your security posture, and what attackers you decide to defend against.  I’d start with a fairly simple combination:

  • move your most important logs off-system.  Where possible, host logs on different systems to the ones that are doing the reporting.  If you’re an attacker, it’s more difficult to jump from one system to another than it is to make changes to logs on a system which you’ve already compromised;
  • make your logs write-only.  This sounds crazy – how are you supposed to check logs if they can’t be read?  What this really means is that you separate read and write privileges on your logs so that only those with a need to read them can do so.  Writing is less worrisome – though there are attacks here, including filesystem starvation – because if you can’t see what you need to change, then it’s almost impossible to do so.  If you’re an attacker, you might be able to wipe some logs – see our case 2 above – but obscuring what you’ve actually done is more difficult.

Exactly what steps you take are up to you, but remember: if you can’t trust your logs, you can’t trust your data, and if you can’t trust your data, you don’t know what has happened.  That’s what your enemy wants: confusion.


1 – like that’s ever going to happen.

2- on this, very rare, occasion, I’m going to countenance[2] a US spelling.  I think you can guess why.

3 – contenance?

4 – I know, I know.

5 – are?

6 – you checked the firmware, right?  Hmm – maybe safer just to buy completely new hardware.

 

What are they attacking me for?

There are three main types of motivations: advantages to them; disadvantages to us; resources.

I wrote an article a few weeks ago called What’s a State Actor, and should I care?, and a number of readers asked if I could pull apart a number of the pieces that I presented there into separate discussions[1].  One of those pieces was the question of who is actually likely to attack me.

I presented a brief list thus:

  • insiders
  • script-kiddies
  • competitors
  • trouble-makers
  • hacktivists
  • … and more.

One specific “more” that I mentioned was State Actors.  If you look around, you’ll find all manner of lists.  Other attacker types that I didn’t mention in my initial list include:

  • members of organised crime groups
  • terrorists
  • “mercenary” hackers.

I suspect that you could come up with more supersets or subsets if you tried hard enough.

This is all very well, but what’s the value in knowing who’s likely to attack you in the first place[3]?  There’s a useful dictum: “No system is secure against a sufficiently resourced and motivated attacker.”[5]  This gives us a starting point, because it causes us to ask the question

  • what motivates the attacker?

In other words: what do they want to achieve?  What, in fact, are they trying to do or get when they attack us?  This is the core theme of this article.

There are three main types of motivations:

  1. advantages to them
  2. disadvantages to us
  3. resources.

There is overlap between the three, but I think that they are sufficiently separate to warrant separate discussion.

Advantages to them

Any successful attack is arguably a disadvantage to us, the attacked, but that does not mean that the primary motivation of an attacker is necessarily to cause harm.  There are a number of other common motivations, including:

  • reputation or “bragging rights” – a successful attack may well be used to prove the skills of an attacker to other parties.
  • information to share – sometimes attackers wish to gain information about our systems to share with others, whether for gain or to enhance their reputation (see above).  Such attacks may be painted a security research, but if they occur outside an ethical framework (such as provided by academic institutions) and without consent, it is difficult to consider them anything other than hostile.
  • information to keep – attackers may gain information and keep it for themselves for later use, either against our systems or against similarly configured systems elsewhere.
  • practice/challenge – there are attacks which are undertaken solely to practice techniques or as a personal challenge (where an external challenge is made, I would categorise them under “reputation”).  Harmless as this motivation may seem to some parts of the community, such attacks still cause damage and require mitigation, and should be considered hostile.
  • for money – some attacks are undertaken at the request of others, with the primary motivation of the attacker being that money or other material recompense (though the motivation of the party commissioning that attack likely to be one of these other ones listed)[6].

Disadvantages to us

Attacks which focus on causing negative impact to the individual or organisation attacked can be listed in the following categories:

  • business impact – impact to the normal functioning of the organisation or individual attacked: causing orders to be disrupted, processes to be slowed, etc..
  • financial impact – direct impact to the financial functioning of the attacked party: fraud, for instance.
  • reputational impact – there have been many attacks where the intention has clearly been to damage the reputation of the attacked party.  Whether it is leaking information about someone’s use of a dating website, disseminating customer information or solely replacing text or images on a corporate website, the intention is the same: to damage the standing of those being attacked.  Such damage may be indirect – for instance if an attacker were to cause the failure of an oil pipeline, affecting the reputation of the owner or operator of that pipeline.
  • personal impact – subtly different from reputational or business impact, this is where the attack intends to damage the self-esteem of an individual, or their ability to function professionally, physically, personally or emotionally.  This could cover a wide range of attacks such as “doxxing” or use of vulnerabilities in insulin pumps.
  • ecosystem impact – this type of motivation is less about affecting the ability of the individual or organisation to function normally, and more about affecting the ecosystem that exists around it.  Impacting the quality control checks of a company that made batteries might impact the ability of a mobile phone company to function, for instance, or attacking a water supply might impact the ability of a fire service to respond to incidents.

Resources

The motivations for some attacks may be partly or solely to get access to resources.  These resources might include:

  • financial resources – by getting access to company accounts, attackers might be able to purchase items for themselves or others or otherwise defraud the company.
  • compute resources – access to compute resources can lead to further attacks or be used for purposes such as cryptocurrency mining.
  • storage resources – attackers may wish to store illegal or compromising material on others’ systems.
  • network resources – access to network resources allows attackers to launch attacks elsewhere or to stream information with little traceability.
  • human resources – access to some systems may allow human resources to be deployed in ways unintended by the party being attacked: deploying police officers to a scene a long distance away from a planned physical attack, for instance.
  • physical resources – access to some systems may also allow physical resources to be deployed in ways unintended by the party being attacked: sending ammunition to the wrong front in a war, might, for example, lead to military force becoming weakened.

Conclusion

It may seem unimportant to consider the motivations of those attacking us, but if we can understand what it is that they are looking for, we can decide what we should defend, and sometimes what types of defence we should put in place.  As always, I welcome comments on this article: I’m sure that I’ve missed out some points, or misrepresented others, so please do get in touch and let me know your thoughts.


1 – I considered this a kind and polite way of saying “you stuffed too much into a single article: what were you thinking?”[2]

2 – and I don’t necessarily disagree.

3 – unless you’re just trying to scare senior management[4].

4 – which may be enjoyable, but is ultimately likely to backfire if you’re doing it without evidence and for a good reason.

5 – I made a (brief) attempt to track the origins of this phrase: I’m happy to attribute if someone can find the original.

6 – hat-tip to Reddit user poopin for spotting that I’d missed this one out.