Helping our governments – differently

… we may live in a new security and terrorism landscape

Two weeks ago, I didn’t write a full post, because the Manchester arena bombing was too raw.  We are only a few days on from the London Bridge attack, and I could make the same decision, but think it’s time to recognise that we have a new reality that we need to face in Britain: that we may live in a new security and terrorism landscape.  The sorts of attacks – atrocities – that have been perpetrated over the past few weeks (and the police and security services say that despite three succeeding, they’ve foiled another five) are likely to keep happening.

And they’re difficult to predict, which means that they’re difficult to stop.  There are already renewed calls for tech companies* to provide tools to allow the Good Guys[tm**] to read the correspondence of the people who are going to commit terrorist acts.  The problem is that the preferred approach requested/demanded by governments seems to be backdoors in encryption and/or communications software, which just doesn’t work – see my post The Backdoor Fallacy – explaining it slowly for governments.  I understand that “reasonable people” believe that this is a solution, but it really isn’t, for all sorts of reasons, most of which aren’t really that technical at all.

So what can we do?  Three things spring to mind, and before I go into them, I’d like to make something clear, and it’s that I have a huge amount of respect for the men and women who make up our security services and intelligence community.  All those who I’ve met have a strong desire to perform their job to the best of their ability, and to help protect us from people and threats which could damage us, our property, and our way of life.  Many of these people and threats we know nothing about, and neither do we need to.  The job that the people in the security services do is vital, and I really don’t see any conspiracy to harm us or take huge amounts of power because it’s there for the taking.  I’m all for helping them, but not at the expense of the rights and freedoms that we hold dear.  So back to the question of what we can do.  And by “we” I mean the nebulous Security Community****.  Please treat these people with respect, and be aware they they work very, very hard, and often in difficult and stressful jobs*****.

The first is to be more aware of our environment.  We’re encouraged to do this in our daily lives (“Report unaccompanied luggage”…), but what more could we do in our professional lives?  Or what could we do in our daily lives by applying our professional capabilities and expertise to everyday activities?  What suspicious activities – from traffic on networks from unexpected place to new malware – might be a precursor to something else?  I’m not saying that we’re likely to spot the next terrorism attack – though we might – but helping to combat other crime more effectively both reduces the attack surface for terrorists and increases the available resourcing for counter-intelligence.

Second: there are, I’m sure, many techniques that are available to the intelligence community that we don’t know about.  But there is a great deal of innovation within enterprise, health and telco (to choose three sectors that I happen to know quite well******) that could well benefit our security services.  Maybe your new network analysis tool, intrusion detector, data aggregator has some clever smarts in it, or creates information which might be of interest to the security community.  I think we need to be more open to the idea of sharing these projects, products and skills – proactively.

The third is information sharing.  I work for Red Hat, an Open Source company which also tries to foster open thinking and open management styles.  We’re used to sharing, and industry, in general, is getting better about sharing information with other organisations, government and the security services.  We need to get better at sharing both active data from systems which are running as designed and bad data from systems that are failing, under attack or compromised.  Open, I firmly believe, should be our default state*******.

If we get better at sharing information and expertise which can help the intelligence services in ways which don’t impinge negatively on our existing freedoms, maybe we can reduce the calls for laws that will do so.  And maybe we can help stop more injuries, maimings and deaths.  Stand tall, stand proud.  We will win.


*who isn’t a tech company, these days, though?  If you sell home-made birthday cards on Etsy, or send invoices via email, are you a tech company?  Who knows.

**this an ironic tm***

***not that I don’t think that there are good guys – and gals – but just that it’s difficult to define them.  Read on: you’ll see.

****I’ve talked about this before – some day I’ll define it.

*****and most likely for less money than most of the rest of us.

******feel free to add or substitute your own.

*******OK, DROP for firewall and authorisation rules, but you get my point.

Single Point of Failure

Avoiding cascade failures with systems thinking.

Let’s start with a story.  Way back in the mists of time*, I performed audits for an organisation which sent out cryptographic keys to its members.  These member audits involved checking multiple processes and systems, but the core one was this: the keys that were sent out were are really big deal, as they were the basis from which tens of thousands of other keys would be derived.  So, the main key that was sent out was really, really important, because if it got leaked, the person who got hold of it would have a chance to do many, many Bad Things[tm].

The main organisation thought that allowing people the possibility to do Bad Things[tm] wasn’t generally a good idea, so they had a rule.  You had to follow a procedure, which was this: they would send out this key in two separate parts, to be stored in two different physical safes, to be combined by two different people, reporting to two different managers, in a process split into to separate parts, which ensured that the two different key-holders could never see the other half of the key.  The two separate parts were sent out by separate couriers, so that nobody outside the main organisation, could ever get to see the two parts.  It was a good, and carefully thought out process.

So one of the first things I’d investigate, on arriving at a member company to perform an audit, would be how they managed their part of this process.  And, because they were generally fairly clued up, or wouldn’t have been allowed to have the keys in the first place, they’d explain how careful they were with the key components, and who reported to whom, and where the safes were, and back up plans for when the key holders were ill: all good stuff.  And then I’d ask: “And what happens when a courier arrives with the key component?”  To which they’d reply: “Oh, the mail room accepts the package.”  And then I’d ask “And when the second courier arrives with the second key component?”  And nine times out of ten, they’d answer: “Oh, the mail room accepts that package, too.”  And then we’d have a big chat.**

This is a classic example of a single point of failure.  Nobody designs systems with a single point of failure on purpose****, but they just creep in.  I’m using the word systems here in the same way I used it in my post Systems security – why it matters: in the sense of a bunch of different things working together, some of which are likely to be human, some of which are likely to be machine.  And it’s hard to work out where single points of failure are.  A good way to avoid them – or minimise their likelihood of occurrence – is to layer or overlap systems*****.  What is terrible is when two single points of failure are triggered at once, because they overlap.  From the little information available to us, this seems to be what happened to British Airways over the past weekend: they had a power failure, and then their backups didn’t work.  In other words, they had a cascade failure – one thing went wrong, and then, when another thing went wrong as well, everything fell over. This is terrible, and every IT professional out there ought be cringing a little bit inside at the thought that it might happen to them.******

How can you stop this happening?  It’s hard, really it is, because the really catastrophic failures only happen rarely – pretty much by definition. Here are some thoughts, though:

  • look at pinch points, where a single part of the system, human or machine, is doing heavy lifting – what happens when they fail?
  • look at complex processes with many interlocking pieces – what happens if one of them produces unexpected results (or none)?
  • look at processes with many actors – what happens if one or actor fails to do what is expected?
  • look at processes with a time element to them – what will happen if an element doesn’t produce results when expected?
  • try back-tracking, rather than forward-tracking.  We tend to think forwards, from input to output: try the opposite, and see what the key parts to any output are.  This may give unexpected realisations about critical inputs and associated components.

Last: don’t assume that your systems are safe.  Examine, monitor, test, remediate.  You might******* also have a good long hard think about managed degradation: it’s really going to help if things do go horribly wrong.

Oh – and good luck.


*around ten years ago.  It feels like a long time, anyway.

**because, in case you missed it, that meant that the person in charge of the mail room had access to both parts of the key.***

***which meant that they needed to change their policies, quickly, unless they wanted to fail the audit.

****I’m assuming that we’re all Good Guys and Gals[tm], right, and not the baddies?

*****the principle of defence in depth derives from this idea, though it’s only one way to do it.

******and we/you shouldn’t be basking in the schadenfreude.  No, indeed.

*******should.  Or even must.  Just do it.

 

Talking to (actual) people – a guide for security folks

…”am I safe from this ransomware thing?”

As you may have noticed*, there was somewhat of a commotion over the past week when the WannaCrypt ransomware infection spread across the world, infecting all manner of systems**, most notably, from my point of view, many NHS systems.  This is relevant to me because I’m UK-based, and also because I volunteer for the local ambulance service as a CFR.  And because I’m a security professional.

I’m not going to go into the whys and wherefores of the attack, of the importance of keeping systems up to date, the morality of those who spread ransomware***,  how to fund IT security, or the politics of patch release.  All of these issues have been dealt with very well elsewhere. Instead, I’m going to discuss talking to people.

I’m slightly hopeful that this most recent attack is going to have some positive side effects.  Now, in computing, we’re generally against side effects, as they usually have negative unintended consequences, but on Monday, I got a call from my Dad.  I’m aware that this is the second post in a row to mention my family, but it turns out that my Dad trusts me to help him with his computing needs.  This is somewhat laughable, since he uses a Mac, which employs an OS of which I have almost no knowledge****, but I was pleased that he even called to ask a question about it.  The question was “am I safe from this ransomware thing?”  The answer, as he’d already pretty much worked out was, “yes”, and he was also able to explain that he was unsurprised, because he knew that Macs weren’t affected, and because he keeps it up to date, and because he keeps backups.

Somebody, somewhere (and it wasn’t me on this occasion) had done something right: they had explained, in terms that my father could understand, not only the impact of an attack, but also what to do to keep yourself safe (patching), what systems were most likely to be affected (not my Dad’s Mac), and what do to in mitigation (store backups).  The message had come through the media, but the media, for a change, seemed to have got it correct.

I’ve talked before about the importance of informing our users, and allowing them to make choices.  I think we need to be honest, as well, about when things aren’t going well, when we (singularly, or communally) have made a mistake.  We need to help them to take steps to protect themselves, and when that fails, to help them clear things up.

And who was it that made the mistake?  The NSA, for researching vulnerabilities, or for letting them leak?  Whoever it was leaked them?  Microsoft, for not providing patches?  The sysadmins, for not patching?  The suits, for not providing money for upgrades?  The security group, putting sufficient controls in place to catch and contain the problem?  The training organisation for not training the users enough?  The users, for ignoring training and performing actions which allowed the attack to happen?

Probably all of the above.  But, in most of those cases, talking about the problem, explaining what to do, and admitting when we make a mistake, is going to help improve things, not bring the whole world crashing down around us.  Talking, in other words, to “real” people (not just ourselves and each other*****): getting out there and having discussions.

Sometimes a lubricant can help: tea, beer, biscuits******.  Sometimes you’ll even find that “real” people are quite friendly.  Talk to them.  In words they understand.  But remember that even the best of them will nod off after 45 minutes or so of our explaining our passion to them.  They’re only human, after all.

 


*unless you live under a rock.

**well, Windows systems, anyway.

***(scum).

****this is entirely intentional: the less I know about their computing usage, the easier it is for me to avoid providing lengthy and painful (not to mention unpaid) support services to my close family.

*****and our machines.  Let’s not pretend we don’t do that.

******probably not coffee: as a community, we almost certainly drink enough of that as it is.

“What is trust?”

I trust my brother and my sister with my life.

Academic discussions about trust abound*.  Particularly in the political and philosophical spheres, the issue of how people trust in institutions, and when and where they don’t, is an important topic of discussion, particularly in the current political climate.  Trust is also a concept which is very important within security, however, and not always well-defined or understood.  It’s central,to my understanding of what security means, and how I discuss it, so I’m going to spend this post trying to explain what I mean by “trust”.

Here’s my definition of trust, and three corollaries.

  • “Trust is the assurance that one entity holds that another will perform particular actions according to a specific expectation.”
  • My first corollary**: “Trust is always contextual.”
  • My second corollary:” One of the contexts for trust is always time”.
  • My third corollary: “Trust relationships are not symmetrical.”

Why do we need this set of definitions?  Surely we all know what trust is?

The problem is that whilst humans are very good at establishing trust with other humans (and sometimes betraying it), we tend to do so in a very intuitive – and therefore imprecise – way.  “I trust my brother” is all very well as a statement, and may well be true, but such a statement is always made contextually, and that context is usually implicit.  Let me provide an example.

I trust my brother and my sister with my life.  This is literally true for me, and you’ll notice that I’ve already contextualised the statement already: “with my life”.  Let’s be a little more precise.  My brother is a doctor, and my sister a trained scuba diving professional.  I would trust my brother to provide me with emergency medical aid, and I would trust my sister to service my diving gear****.  But I wouldn’t trust my brother to service my diving gear, nor my sister to provide me with emergency medical aid.  In fact, I need to be even more explicit, because there are times which I would trust my sister in the context of emergency medical aid: I’m sure she’d be more than capable of performing CPR, for example.  On the other hand, my brother is a paediatrician, not a surgeon, so I’d not be very confident about allowing him to perform an appendectomy on me.

Let’s look at what we’ve addressed.  First, we dealt with my definition:

  • the entities are me and my siblings;
  • the actions ranged from performing an emergency appendectomy to servicing my scuba gear;
  • the expectation was actually fairly complex, even in this simple example: it turns out that trusting someone “with my life” can mean a variety of things from performing specific actions to remedy an emergency medical conditions to performing actions which, if neglected or incorrectly carried out, could cause death in the future.

We also addressed the first corollary:

  • the contexts included my having a cardiac arrest, requiring an appendectomy, and planning to go scuba diving.

Let’s add time – the second corollary:

  • my sister has not recently renewed her diving instructor training, so I might feel that I have less trust in her to service my diving gear than I might have done five years ago.

The third corollary is so obvious in human trust relationships that we often ignore it, but it’s very clear in our examples:

  • I’m neither a doctor nor a trained scuba diving instructor, so my brother and my sister trust me neither to provide emergency medical care nor to service their scuba gear.******

What does this mean to us in the world of IT security?  It means that we need to be a lot more precise about trust, because humans come to this arena with a great many assumptions.  When we talk about a “trusted platform”, what does that mean?  It must surely mean that the platform is trusted by an entity (the workload?) to perform particular actions (provide processing time and memory?) whilst meeting particular expectations (not inspecting program memory? maintaining the integrity of data?).  The context of what we mean for a “trusted platform” is likely to be very different between a mobile phone, a military installation and an IoT gateway.  And that trust may erode over time (are patches applied? is there a higher likelihood that an attacker my have compromised the platform a day, a month or a year after the workload was provisioned to it?).

We should also never simply say, following the third corollary, that “these entities trust each other”.  A web server and a browser may have established trust relationships, for example, but these are not symmetrical.  The browser has  probably established with sufficient assurance for the person operating it to give up credit card details that the web server represents the provider of particular products and services.  The web server has probably established that the browser currently has permission to access the account of the user operating it.

Of course, we don’t need to be so explicit every time we make such a statement.  We can explain these relationships in definitions of documents, but we must be careful to clarify what the entities, the expectations, the actions, the contexts and possible changes in context.  Without this, we risk making dangerous assumptions about how these entities operate and what breakdowns in trust mean and could entail.


*Which makes me thinks of rabbits.

**I’m hoping that we can all agree on these – otherwise we may need to agree on a corollary bypass.***

***I’m sorry.

****I’m a scuba diver, too.  At least in theory.*****

*****Bringing up children is expensive and time-consuming, it turns out.

******I am, however, a trained CFR, so I hope they’d trust me to perform CPR on them.

Being commercial

… given that I probably wouldn’t be writing this blog if I weren’t paid by my employer, I don’t feel to bad about mentioning our Summit…

I get paid*.  By Red Hat.  Not to write these blog posts, but to do a job of work.  The musings which make up this blog aren’t necessarily directly connected to the views of my employer (see standard disclaimer), but given that I try to conduct my work with integrity and to blog about stuff I believe in, there’s a pretty good correlation**.

Anyway, given that I probably wouldn’t be writing this blog if I weren’t paid by my employer, I don’t feel to bad about mentioning our Summit this week.  It’s my first one, and I’m involved in two sessions: one on moving to a hybrid (or multi-) cloud model, and one about the importance of systems security and what impact Open Source has on it (and vice versa).  There’s going to be a lot of security-related content, presented by some fantastic colleagues, partners and customers, and, depending on quite how busy things are, I’m hoping to post snippets here.

In the meantime, I’d like to invite anybody who reads this blog and will be attending the Red Hat Summit to get in touch – it would be great to meet you.

 


*which is, in my view, a Good Thing[tm].

**see one of my favourite xkcd cartoons.

Service degradation: actually a good thing

…here’s the interesting distinction between the classic IT security mindset and that of “the business”: the business generally want things to keep running.

Well, not all the time, obviously*.  But bear with me: we spend most of our time ensuring that all of our systems are up and secure and working as expected, because that’s what we hope for, but there’s a real argument for not only finding out what happens when they don’t, and not just planning for when they don’t, but also planning for how they shouldn’t.  Let’s start by examining some techniques for how we might do that.

Part 1 – planning

There’s a story** that the oil company Shell, in the 1970’s, did some scenario planning that examined what were considered, at the time, very unlikely events, and which allowed it to react when OPEC’s strategy surprised most of the rest of the industry a few years later.  Sensitivity modelling is another technique that organisations use at the financial level to understand what impact various changes – in order fulfilment, currency exchange or interest rates, for instance – make to the various parts of their business.  Yet another is war gaming, which the military use to try to understand what will happen when failures occur: putting real people and their associated systems into situations and watching them react.  And Netflix are famous for taking this a step further in the context of the IT world and having a virtual Chaos Monkey (a set of processes and scripts) which they use to bring down parts of their systems in real time to allow them to understand how resilient they the wider system is.

So that gives us four approaches that are applicable, with various options for automation:

  1. scenario planning – trying to understand what impact large scale events might have on your systems;
  2. sensitivity planning – modelling the impact on your systems of specific changes to the operating environment;
  3. wargaming – putting your people and systems through simulated events to see what happens;
  4. real outages – testing your people and systems with actual events and failures.

Actually going out of your way to sabotage your own systems might seem like insane behaviour, but it’s actually a work of genius.  If you don’t plan for failure, what are you going to do when it happens?

So let’s say that you’ve adopted all of these practices****: what are you going to do with the information?  Well, there are some obvious things you can do, such as:

  • removing discovered weaknesses;
  • improving resilience;
  • getting rid of single points of failure;
  • ensuring that you have adequately trained staff;
  • making sure that your backups are protected, but available to authorised entities.

I won’t try to compile an exhaustive list, because there are loads books and articles and training courses about this sort of thing, but there’s another, maybe less obvious, course of action which I believe we must take, and that’s plan for managed degradation.

Part 2 – managed degradation

What do I mean by that?  Well, it’s simple.  We***** are trained and indoctrinated to take the view that if something fails, it must always “fail to safe” or “fail to secure”.  If something stops working right, it should stop working at all.

There’s value in this approach, of course there is, and we’re paid****** to ensure everything is secure, right?  Wrong.  We’re actually paid to help keep the business running, and here’s the interesting distinction between the classic IT security mindset and that of “the business”: the business generally want things to keep running.  Crazy, right?  “The business” want to keep making money and servicing customers even if things aren’t perfectly secure!  Don’t they know the risks?

And the answer to that question is “no”.  They don’t know the risks.  And that’s our real job: we need to explain the risks and the mitigations, and allow a balancing act to take place.  In fact, we’re always making those trade-offs and managing that balance – after all, the only truly secure computer is one with no network connection, no keyboard, no mouse and no power connection*******.  But most of the time, we don’t need to explain the decisions we make around risk: we just take them, following best industry practice, regulatory requirements and the rest.  Nor are the trade-offs usually so stark, because when failure strikes – whether through an attack, accident or misfortune – it’s often a pretty simple choice between maintaining a particular security posture and keeping the lights on.  So we need to think about and plan for some degradation, and realise that on occasion, we may need to adopt a different security posture to the perfect (or at least preferred) one in which we normally operate.

How would we do that?  Well, the approach I’m advocating is best described as “managed degradation”.  We allow our systems – including, where necessary our security systems – to degrade to a managed (and preferably planned) state, where we know that they’re not operating at peak efficiency, but where they are operating.  Key, however, is that we know the conditions under which they’re working, so we understand their operational parameters, and can explain and manage the risks associated with this new posture.  That posture may change, in response to ongoing events, and the systems and our responses to those events, so we need to plan ahead (using the techniques I discussed above) so that we can be flexible enough to provide real resiliency.

We need to find modes of operation which don’t expose the crown jewels******** of the business, but do allow key business operations to take place.  And those key business operations may not be the ones we expect – maybe it’s more important to be able to create new orders than to collect payments for them, for instance, at least in the short term.  So we need to discuss the options with the business, and respond to their needs.  This planning is not just security resiliency planning: it’s business resiliency planning.  We won’t be able to consider all the possible failures – though the techniques I outlined above will help us to identify many of them – but the more we plan for, the better we will be at reacting to the surprises.  And, possibly best of all, we’ll be talking to the business, informing them, learning from them, and even, maybe just a bit, helping them understand that the job we do does have some value after all.


*I’m assuming that we’re the Good Guys/Gals**.

**Maybe less story than MBA*** case study.

***There’s no shame in it.

****Well done, by the way.

*****The mythical security community again – see past posts.

******Hopefully…

*******Preferably at the bottom of a well, encased in concrete, with all storage already removed and destroyed.

********Probably not the actual Crown Jewels, unless you work at the Tower of London.